IHdbokoMyHiKaLiHi Ta komn'toTepHi TexHonorii, Ne 1 (09), 2025

UDC 004.8:004.4
DOI https://doi.org/10.36994/2788-5518-2025-01-09-04

COMPARATIVE EVALUATION OF AI-POWERED IDES: CURSOR Al
AND WINDSURF IN SOFTWARE DEVELOPMENT WORKFLOWS

Petrenko S. V., Ph.D., Ass. Prof., Rivne State University of the Humanities, Rivne, Ukraine.
https://orcid.org/0000-0002-5311-0743, serhii.petrenko@rshu.edu.ua

Abstract. The emergence of Al-powered integrated development environments (IDEs) marks a
transformative phase in software engineering, where intelligent agents actively assist in tasks such as code
generation, navigation, refactoring, and deployment. This study presents a comparative evaluation of two
prominent GenAl-driven IDEs — Cursor Al and Windsurf — with the objective of exploring their effectiveness,
usability, and limitations in real-world programming scenarios. Drawing on a case-based methodology,
both tools were deployed in the development of a Ul frontend for a backend service, allowing for empirical
observation of how these environments interpret context, respond to user prompts, and manage iterative
development cycles.

The analysis confirms that both Cursor Al and Windsurf function as agentic collaborators rather than
passive utilities, capable of modifying workflows, managing dependencies, interpreting instructions, and
adapting to runtime environments. Cursor Al offers notable flexibility by supporting its agent mode within
the free plan, thus lowering the entry barrier for developers. In contrast, Windsurf emphasizes streamlined
deployment workflows, providing Netlify integration and live previewing capabilities that enhance its utility
for rapid prototyping.

Despite their strengths, several challenges emerged. Both tools exhibited issues such as hallucinated
suggestions, redundant change cycles, and unanticipated modifications. These findings underscore the
critical role of human oversight, especially in complex tasks requiring domain-specific accuracy. Additionally,
the assistants’ behaviors reflect current limitations in aligning Al-generated logic with developer mental
models — particularly when reasoning about incomplete or ambiguous input.

This research contributes to the broader discourse on generative Al in software development by offering
grounded, comparative insights into how intelligent IDEs function under real-world constraints. The results
highlight the ongoing need for improved transparency, context retention, and user control in Al-agent design.
By treating these environments not just as tools but as evolving teammates, the study offers a perspective
for future enhancements, where productivity gains can be achieved without compromising development
quality or workflow clarity.

Key words: Al-powered development; IDE, Cursor Al; Windsurf IDE; code generation; software
engineering tools; developer productivity; Generative Al; autonomous programming assistants.

NOPIBHAJIBHA OUIHKA CEPEAOBULL PO3POBKU HA OCHOBI LUTYYHOIO
IHTENEKTY: CURSOR Al TA WINDSURF Y POBOYUX NPOLECAX PO3POBKU
NMPOrPAMHOIO 3ABE3NEYEHHA

Cepeiti lMempeHko, K.n.H., OoueHm, PieHeHCbkul OepxkagHul 2ymaHimapHul yHieepcumem, PigHe,
YkpaiHa. https://orcid.org/0000-0002-5311-0743, serhii.petrenko@rshu.edu.ua

AHomauis. Nosiea iHmeegposaHux cepedosuuy po3pobku (IDE) 3i wmy4yHUM iHMENEKMOM 3HaMeHye
coboro mpaHcghopmayitiHul emarn 8 iHXeHepii npogpamMHo20 3abe3rneqyeHHs, 0e iHmernekmyarbHi a2eH-
mu akmugHo doriomazarome Yy BUKOHaHHI maKux 3aedaHb, 5K 2eHepauis K00y, Haegizauisi, pechakmopuHe i
po3zopmaHHs. Y docridxeHHi nodaHo rnopieHsnbHy ouiHKy 08ox gidomux IDE Ha ocHosi GenAl — Cursor Al
U Windsurf — 3 Memoro 8us4yeHHs ix eghekmusHocmi, 3py4HOCMI 8UKOPUCMAaHHS Ui OOMEXeHb y pearbHUX
cueHapisix npozpamysaHHs. Criuparoyucb Ha Kelic-memodosoeito, obudea iHCmpyMeHmMu 3acmocysanu
0151 po3pobKuU iHMepdgbelicy kopucmysada Os1s1 bekeHd-cepsicy, wo 0ano 3Moay eMripuyHO criocmepizamu
3a mum, 5K yi cepedosula iHmeprnpemyrms KOHMEeKCM, peagyrome Ha nidKka3ku Kopucmysada ma Kepy-
oMb imepamugHUMU UuUKamu po3pobKu.

AHaniz nidmeepdxye, wo U Cursor Al, i Windsurf ¢byHKUioHyromb ik azeHmHi korabopamopu, a He
rnacusHi ymuriimu, 30amHi 3miHro8amu poboui npoyecu, Kepysamu 3aiexxHoCmsMu, iHmeprnpemyesamu iH-
cmpykuii U adanmysamucs 00 cepedosuly, 8UKOHaHHS. Cursor Al MporoHye 3Ha4yHy eHy4Kicmb, miompu-
MYKOYU a2eHMCbKUU PexXuM y pamkax 6e3KowmoeHOo20 mapuchHO20 rnaHy, Wo 3HUXYe exiOHul 6ap’ep
0n1s1 po3pobHukis. Windsurf, Hasnaku, pobume akuyeHm Ha cripoweHuUx pobo4yux npoyecax po320pmaHHs,
3abesneydyroyu iHmeepauito 3 Netlify ma moxnueocmi nonepedHbo20 rnepearnsady 8 pearbHOMY 4Yaci, Wo
nidsuwye io2o KopucHicms 0151 WeUOKO20 CMBOPEHHS Npomomurlis.

39

ISSN 2788-5518

lMonpu HasigHICMb HU3KU CUSTbHUX CMOPIH, 8usisrieHi okpemi npobnemHi acnekmu. Obudea iHCMpyMeH-
mu npodeMoHcmpysanu maki npobrnemu, siK 2amoyuHayii, Hadnuwkosi Yukiu 3miH i HeriepedbadyyeaHi
moducpikauii. Lli euCHOBKU MIOKpecolms KpUMUYHy posb NT00CLK020 Haersdy, ocobnueo 8 ckriadHUX
3ae0aHHsIX, WO suMazarompe crneyugiyHoi moyHocmi. Kpim moeo, nosediHka acucmeHmis gidobpakae
HasigHi OOMeXXeHHS1 8 y3200)KeHHi noeiku LU 3 meHmanbHUMu ModenisamMu po3pobHuUkKie, 0cobnueo Kosu
tidembCs Mpo HernosHi abo HeOOHO3HaYHI 8XiOHI OaHi.

LocnidxeHHs1 pobumb 8HECOK y wupwuli QUCKYpC npo 2eHepamusHul LI 8 po3pobyi npoepamHO20
3abe3rnedyeHHs, NPOoroHy4YU 0brpyHmoesaHe ropieHsIIbHe PO3yMIHHS MO20, SK iHmenekmyarbHi IDE ¢yHK-
UioHyromb 8 ymMoeax pearibHux obmexeHb. OmpumaHi pe3dynbmamu akueHmyroms Ha cmarnit nompebi
3abesrnedeHHs MPo30pocmi, 36epexxeHHs1 KOHMeKCmy U KopucmyealubKo20 KOHMPOITHO 8 MPOoyeci po3pobKu
Al-azeHmis. Po32s1510 3a3Ha4eHUX cUCMEM He JUWE SIK IHCmPYMeHMI8, a sIK €80TFOUIOHYIOHUX NapmHepis y
KoMaHOHIU 83aemodii 8i0Kpueae nepcrnekmMusHi Harnpsimu nodasibwoao 800CKOHANEHHS, ¥ Mexax sIKux rio-
8UWEHHS NPpodykmueHocmi Moxe bymu docsieHyme 6e3 ympamu Kocmi po3pobku U Yimkocmi opaaHisauil
poboyoeo rpouecy.

Knroyoei cnoea: pospobka i3 3acmocysaHHsam LUI; IDE; Cursor Al; Windsurf IDE; eeHepauis kody; iH-
cmpyMeHmu iHxeHepii npoepamMHo20 3abesneqyeHHs; MPoOyKmMugHicmb po3pobHuka; seHepamusHul LUI;
aB8MOHOMHI MOMIYHUKU ripozgpamicma.

Introduction

In the rapidly evolving world of Generative Al (Gen Al), each day brings something new in artificial
intelligence (Al). This “new” can be ordinary or unpredictable and curious — sometimes even a potential
game changer. The current moment is a remarkable time for Al agents. OpenAl CEO Sam Altman has
declared 2025 the “year of Al agents,” envisioning a future where intelligent tools not only automate millions
of jobs but also operate entire companies independently of human oversight.

IBM defines an Al agent as a system or program capable of autonomously performing tasks on behalf of
a user or another system by designing its own workflow and utilizing available tools [5]. Based on this, an
Al-powered integrated development environment (IDE) is indeed an Al agent.

Cursor Al and Windsurf exemplify this by autonomously assisting developers in their everyday tasks —
generating code snippets, offering intelligent refactoring suggestions, performing contextual searches, and
dynamically interacting with developers through chat-based interfaces. Their ability to independently
determine workflows, apply context-aware logic, and provide proactive assistance firmly positions them as
modern Al agents in the software development lifecycle.

The emergence of such coding assistants is fundamentally reshaping software engineering. These tools
extend traditional IDEs into intelligent agents capable of generating, testing, and refactoring code across
large codebases. The evolution from conventional environments to “Intelligent Development Environments”
signals a shift where developers orchestrate workflows with the help of Al rather than writing all code
manually [6].

Empirical research has shown both potential and limitations of these tools. For example, Al coding
assistants can improve task completion and self-perceived productivity, particularly in structured or
educational contexts. However, they often produce results that require human repair, especially when
lacking sufficient project context [4]. Furthermore, a recent survey of over 400 practitioners reveals that while
developers embrace Al for testing and documentation, they remain cautious about its use in debugging or
architectural design [1].

Another key concern is how well these tools align with developer mental models. Misaligned suggestions
or unpredictable changes may hinder adoption. Researchers propose that personalized, context-aware
interfaces and interaction patterns are essential to build trust and usability [4].

An empirical evaluation of IBM’s internal Al assistant, watsonx Code Assistant (WCA), was conducted
among 669 enterprise users, complemented by usability testing with 15 participants. The study revealed
nuanced effects: while the Al assistant often yielded net productivity gains, the level of benefit varied
significantly across users. Developers reported a shift in responsibility regarding ownership of generated
code, and motivations and expectations regarding speed and quality influenced usage patterns [8]. These
findings underscore that productivity improvements hinge not only on functional capabilities but also on
factors such as user trust, perceived responsibility, and organizational context.

Cursor Al and Windsurf are prominent examples of these new Al-augmented IDEs. Both offer similar
foundational capabilities, including multi-file editing, integrated terminal commands, and LLM-powered
agents. However, they differ in implementation details, interface behavior, and available functionality, such
as memory handling or deployment tools [1; 4; 6; 8].

This study is dedicated to the analysis of Al-assisted software development environments, with a specific
focus on Cursor Al and Windsurf. These tools represent a new class of intelligent agents that support developers
in tasks such as code generation, navigation, refactoring, and contextual understanding. The article provides
a comprehensive comparison of their functionalities, interaction paradigms, and user experience design,
highlighting the ways in which these systems influence the software development process.

40

IHdbokoMyHiKaLiHi Ta komn'toTepHi TexHonorii, Ne 1 (09), 2025

To ground the analysis in practical relevance, a case-based methodology is employed using a
representative software project. This enables an in-depth exploration of how each tool integrates into the
coding workflow, handles user input, and supports iterative development tasks.

Many developers already rely on familiar IDEs with customized hotkeys and optimized workflows, the
increasing capabilities of Al-augmented environments raise the question of whether adopting such agents
can enhance productivity without disrupting existing habits. Rather than positioning these tools as mere
utilities, this paper conceptualizes them as semi-autonomous collaborators — akin to junior team members
who learn project context and evolve their behavior over time. The study also aims to address unresolved
questions in the field, including:

— the effectiveness of agent-empowered IDEs across end-to-end development workflows;

— the role of agentic interface design in aligning with developer intent and trust;

— and the actual patterns of adoption in non-experimental, developer-centered environments.

Through a mixed-methods approach — combining a controlled experiment, comparative feature analysis,
and reflective evaluation — this paper contributes empirical insights into the capabilities and limitations of
Cursor Al and Windsurf as intelligent development agents.

Research

To provide a comprehensive understanding of Cursor Al and Windsurf, the comparison covers multiple
dimensions: installation and setup, interface usability, memory and rule management, available models,
agent behavior, and overall responsiveness.

Acquaintance

The initial step involves downloading and installing the respective tools, which is a straightforward
process. Both Windsurf and Cursor Al provide direct installation options via their official websites: [9] and
[2], respectively.

The installation process is similar for both, quite fast and convenient. As shown in the screenshots, each
environment offers intuitive navigation, with the right-hand panel dedicated to interactive communication
with the Al model. This design choice aligns with contemporary UI/UX practices, facilitating fluid developer-
agent collaboration from the outset.

Fig. 1. Windsurf IDE

Fig. 2. Cursor Al IDE

41

ISSN 2788-5518

Base

Both tools are forked from VS Code, providing a familiar user environment. After installation, each IDE
conveniently offers to add all existing plugins from your current VS Code setup, greatly simplifying the
transition. Both IDEs allow you to choose models for work, including ChatGPT, Claude, and others [3; 9].

Agent mode

Composer in Cursor — an agent that can be asked to formulate tasks in natural language right in the
chat. It generates and executes commands in the terminal independently and can also determine what
context it needs to understand [3]. If you're a Composer fan, you should thank the Windsurf team — they
were the first to implement a similar idea in their Cascade [9]. While writing these materials, the Cursor has
rolled out an update, and from now on Agent, Chat, and Composer are all in one [3; 9].

Memories and rules

For Cursor Al, we should have the .cursorrules file — it allows you to define project-specific instructions
for Cursor and should be placed in the root directory of your project. Besides, Cursor has Notepads. They
are ideal for capturing architectural decisions, coding standards, reusable snippets, team guidelines, and
commonly accessed reference materials. Windsurf has a specific section where you can manage memories
(like in ChatGPT) and tune your rules, which the user manually defines at local and global levels.

Differences

Until recently, Cursor had one unique feature — commit message generation, but on April 2, the Windsurf's
team threw the same feature, though in beta. Also, Windsurf introduced Deploys (Beta), which helps to deploy
your application with one prompt to Netlify under a windsurf.build domain. One more ability that looks great
is a preview: previews in Windsurf allow you to view the local deployment of your app either in the IDE or in the
browser with listeners, allowing you to iterate rapidly by easily sending elements and errors back to Cascade
as context. An interesting thing | found in Cursor is ignoring files: .cursorignore blocks files from being added
in chat or sent up for tab completions, in addition to ignoring them from indexing. Another update is that Cursor
can now play a sound when a chat is ready for review. Both teams carefully study their competitors, so you
don't have to worry that some cool things one team has won't be available to the other.

Price

The Windsurf Pro plan will cost you $15 per month, while the Cursor Al Pro plan will cost $20 (with an
early plan, it will reduce to $16). Unfortunately, Cascade Base does not support Write mode on the Free
plan, and you need a paid plan [3; 9].

Experiment

Details

As a backend engineer, my typical interaction with end-users is limited to designing and exposing APIs.
Consequently, tasks that require a user interface (Ul) layer often present a challenge, particularly in the
absence of dedicated front-end resources. In team-based development, such responsibilities are typically
delegated to front-end specialists. However, in contexts such as personal projects or proof-of-concept
prototypes — where time and resources are constrained — developers frequently need to implement basic
Ul components themselves.

To simulate this scenario, an experiment was designed in which a frontend interface was created for
an existing backend web service [7]. The selected use case was a simple tic-tac-toe game with standard
functionality. The base project and resulting implementations are publicly available via the links provided
at the end of the article. It is important to note that the frontend was developed by a non-specialist in Ul/
UX, and therefore, the visual and structural quality is left open for evaluation by experienced practitioners.
Readers are encouraged to assess the resulting interfaces in terms of architectural clarity, adherence to
best practices, and code readability [7].

Fig. 3. The structure of base Java project

42

IHdbokoMyHiKaLiHi Ta komn'toTepHi TexHonorii, Ne 1 (09), 2025

Configuration

1. Both Al tools will work on the same base project.

2. We will use the same prompts in both systems, except when the models are halting or making
mistakes.

3. A comparison is performed on standard settings of environments using the same model. In our case,
it is Claude 3.5 Sonnet from Anthropic.

Outcomes

The initial task assigned to both Al-powered IDEs mirrored a common developer practice when
approaching unfamiliar code: performing a high-level analysis and generating a concise summary of the
project. Both Cursor Al and Windsurf completed this task effectively, demonstrating their capability to
comprehend code structure and provide meaningful overviews.

1. Project Type: This g Boot p ng Maven as the build tool.

ok for reducing bo
r for web application development
3. Project Structure:

text

2. Project Structure:

demo/

demo/

— -mvny

— sr

| — main/
i

— pe 4.Key Features:
— mvnw v

— mvnw.cmd

— nvow.cmd

3. Key Features:

.V a

« Configured with Maven Compiler Plugin
« Lombokannotation processor config

6. Development Tools:

Fig. 4. Windsurf's first analysis Fig. 5. Cursor's first analysis

Following the initial analysis, the assistants successfully identified the technology stack and overall
project structure. The next step involved inferring the application’s domain and underlying business
requirements. Both Al tools demonstrated the ability to extract and articulate the intended purpose of the
software with minimal guidance, effectively interpreting contextual cues and providing coherent summaries
of the system’s goals.

ns, and diagonals)

+ Jtictactoe/status - €

2. APl Endpoints (at /tictactos
GET /board i

« /tictactoe/move
GET /status

] , or dra
POST /move - mak

3. Technical Implementation

. Boo

andling (Controller)
Fig. 6. Windsurf's respons Fig. 7. Cursor's response
With the foundational analysis complete, the assistants were ready to begin addressing the core

development tasks. As the interaction patterns in both Al-powered IDEs are largely analogous, the focus
shifts to examining notable interaction instances, emergent behaviors, and opportunities arising during

43

ISSN 2788-5518

agent-assisted development. Figure 8 illustrates the assistants' reasoning process and real-time code
modifications, offering insight into their operational flow and decision-making strategies.

erve our HTML template and handle the board rendering.

Fig. 8. Collaboration in the chat

You'll notice that you can check and compare differences for each change. Pay attention to how detailed
each step is. It makes it easier to navigate faster and keep an eye on what's going on. In addition to that,
when you don'’t like changes in a specific file, you can discard them. Even more, you can accept or reject
them line by line (see Fig. 9).

Accept Alt+<

Fig. 9. Changes managing

We have finished with the changes, and IDE provides a command for the terminal to run our application
and 2 buttons, accept or reject. After accepting, it will open the terminal window and run the command —
looks great. In the course of deployment, the application encountered a compatibility issue related to the
Java version. Although the backend service was developed using Java 23, this version was not available
on the local machine. Remarkably, both Al-powered IDEs identified the issue from the terminal’s stack
trace, accurately diagnosed the root cause, detected the installed Java version in the current environment,
and autonomously adjusted the project configuration to use Java 17. This behavior contrasts with typical
responses from general-purpose Al chat interfaces, which often suggest upgrading or switching tools. In
this case, the IDE agents demonstrated adaptive reasoning, behaving more like experienced developers
by aligning the application’s configuration with the actual runtime environment.

Once the application was successfully launched, functional testing commenced. Notably, although no
explicit request was made for a “new game” button, Cursor Al autonomously included this feature. This
behavior may be interpreted in two ways. On one hand, it could represent a hallucination — a known
phenomenon where large language models generate content that was not prompted. On the other hand, it
may reflect the model’s proactive behavior, where the agent inferred the utility of such a feature based on
common usage patterns and project context, thereby anticipating user needs.

The initial implementation resulted in a minimally functional application. With the core features in
place, further enhancements were explored. Two seemingly simple features were selected for integration-
deliberately chosen to evaluate the assistants’ ability to interpret visual and contextual instructions. A
screenshot was annotated with graphical markers and embedded comments to illustrate the intended
modifications. This approach allowed for testing the agents’ capacity to interpret visual prompts and
translate them into actionable code changes (see Fig. 12).

Additionally, a request was made to Windsurf to implement a reset game button. The process of
reviewing and accepting modifications in the generated files closely resembles the workflow of resolving
merge conflicts in version control systems (Fig. 13).

44

IHdbokoMyHiKaLiHi Ta komn'toTepHi TexHonorii, Ne 1 (09), 2025

Tic-tac-toe Game

Tic-tac-toe Playes X wins!
X wins!
X (0]
X)
X o
X
X
X
Fig. 10. Windsurf's result Fig. 11. Cursor's result
T
Tic-tac-toe SoEe e T o
p— 4

I want to cross out winner line

Fig. 12. Screen with instructions

resetGame()
0 char[] row : board
Arrays.fill(row,)

currentPlayer = PlayerSymbol.X;
status = GameStatus.IN_PROGRESS;

Fig. 13. Review changes

After one more round of modifications and adding new functionality, we need to run the app again and
test it. And another feather in the cap: both agents detect that the previous server instance is still running,
stop it, and restart the application.

We are approaching the end of our experiment. The application has a Ul part, new functionality was
added, and everything works as expected. | needed 20 requests to reach this result. Windsurf calculates

prompts (each message) and flow action credits (each tool call: create, modify, analyze, search, terminal).
Cursor Al is a bit simpler and calculates requests.

Usage

Usage (Last 30 days)

Premium models 20 / 150 gpt-4o-mini or cursor-small @ / No Limit

You've used 2@ requests out of your 150 You've used @ fast requests of this model.
fast requests quota. You have no monthly quota.

Fig. 14. Cursor’s free account limits

45

ISSN 2788-5518

Failed takes

1. It is not entirely clear what prompted Windsurf to modify the controller mappings. In the Java world,
we have two approaches to annotating controllers. @RestController annotation to simplify the creation of
RESTful web services. It's a convenient annotation that combines @Controller and @ResponseBody, and
Windsurf replaced @RestController with @Controller and added @ResponseBody to each method.

2. Also, I'm not a big fan of such hardcoded parts that Windsurf did.

return String.format("%s<div id='game-status' class='status' hx-get="/tictactoe/status' hx-trigger='load,
every 500ms'>%s</div>", board, status);

3. An interesting behavior that needs to be mentioned is that Al generates code and then detects errors
in the code it just produced.

4. We are stuck in a cycle of hallucinations while fixing proper display cross out the winner line. When
Cursor needed five shoots to fix the behavior, Windsurf did in 13. Also, on each iteration, Al made a lot of
changes. Sometimes, it started checks, found issues, and automatically started to resolve them, but it took
a lot of time. After 10 shorts, | asked to remove the line and start over. Lesson learned: we should interrupt
the process when we notice such behavior.

Tic-tac-toe

Tic-tac-toe Tic-tac-toe

X wang
X wins!

Fig. 15. Hallucination examples

Conclusions

This study contributes to the growing body of research on Al-assisted software development by empirically
examining Cursor Al and Windsurf — two modern integrated development environments enhanced with
generative Al capabilities. Anchored in a case-based methodology, the evaluation focused on their capacity
to support real-world development workflows, particularly in tasks related to code generation, contextual
reasoning, and iterative refactoring.

Both tools demonstrated promising potential as agentic collaborators, autonomously adapting to
environmental constraints and user input. The comparative analysis revealed several shared strengths,
including rapid contextual understanding, multi-step interaction, and integration with LLM-based agents. At
the same time, distinct differences emerged in terms of interface conventions, feature completeness, and
pricing strategies.

Cursor Al’s inclusion of a functional agent mode in its free plan offers an accessible entry point for
experimentation, whereas Windsurf’s reliance on a paid tier for core functionality presents a limitation for
broader adoption. However, Windsurf compensates with innovative features such as real-time deployment
previews and deploy-to-Netlify integration, reinforcing its appeal for rapid prototyping scenarios.

While both environments reflect active development and feature parity trends, the observed issues — such
as hallucinated code modifications, redundant iterations, and non-intuitive decisions — highlight the need
for further refinement in aligning agent behavior with developer expectations and mental models. These
limitations underscore the importance of human oversight and interruption mechanisms in agentic IDEs.

Importantly, the findings affirm that Al-augmented IDEs should not be perceived as mere utilities but rather
as evolving collaborators. Their value lies in supporting developers through high-level orchestration, not
replacing human judgment. Future research could extend this evaluation to complex, large-scale software
systems and team-based workflows to further investigate long-term adoption patterns and productivity
impacts.

In conclusion, Cursor Al and Windsurf offer significant yet evolving contributions to the software
engineering landscape. Their success will ultimately depend on continued enhancements in usability,
transparency, and trustworthiness — qualities essential for integrating Al agents seamlessly into everyday
development practices.

46

IHdbokoMyHiKaLiHi Ta komn'toTepHi TexHonorii, Ne 1 (09), 2025

Bibliography

1. Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, Iftekhar Ahmed, Using Al-based coding assistants in practice: State of
affairs, perceptions, and ways forward. Information and Software Technology. 2025. Vol. 178. P. 107610. ISSN 0950-5849. https://
doi.org/10.1016/j.infsof.2024.107610.

2. Codeium. (n.d.). Windsurf — Codeium. URL: https://codeium.com/windsurf.

3. Cursor. (n.d.). Cursor. URL: https://www.cursor.com/.

4. Desolda G., Mazzini S., Polonio A., De Angeli A. Aligning Al programming assistants with developers’ mental models:
Lessons learned from empirical studies. Advanced Engineering Informatics. 2024. Ne 60. P. 102401. https://doi.org/10.1016/j.
aei.2024.102401.

5. IBM. (n.d.). What is an Al agent? URL: https://www.ibm.com/think/topics/ai-agents.

6. Marron J. M., D'Antoni L., Teitelman R. Intelligent Development Environments: The Next Evolution of Al-Powered Software
Engineering (arXiv:2404.12000v2). arXiv. 2024. https://doi.org/10.48550/arXiv.2404.12000.

7. Petrenko S. (n.d.). Al-powered [GitHub repository]. GitHub. URL: https://github.com/serhii-petrenko/ai-powered.

8. Weisz J. D., Kumar S., Muller M., Browne K.-E., Goldberg A., Heintze E., Bajpai S. Examining the Use and Impact of
an Al Code Assistant on Developer Productivity and Experience in the Enterprise (arXiv:2412.06603v2). arXiv. 2025. https://doi.
0rg/10.48550/arXiv.2412.06603.

9. Windsurf. (n.d.). Windsurf. URL: https://windsurf.com/.

References

1. Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, Iftekhar Ahmed, Using Al-based coding assistants in practice: State of
affairs, perceptions, and ways forward, Information and Software Technology, Volume 178, 2025, 107610, ISSN 0950-5849, https://
doi.org/10.1016/j.infsof.2024.107610.

2. Codeium. (6. g.). Windsurf — Codeium. https://codeium.com/windsurf.

3. Cursor. (6. a.). Cursor. https://www.cursor.com/.

4. Desolda, G., Mazzini, S., Polonio, A., & De Angeli, A. (2024). Aligning Al programming assistants with developers’ mental
models: Lessons learned from empirical studies. Advanced Engineering Informatics, 60, 102401. https://doi.org/10.1016/j.
aei.2024.102401.

5. IBM. (n.d.). What is an Al agent? https://www.ibm.com/think/topics/ai-agents.

6. Marron, J. M., D'Antoni, L., & Teitelman, R. (2024). Intelligent Development Environments: The Next Evolution of Al-Powered
Software Engineering (arXiv:2404.12000v2). arXiv. https://doi.org/10.48550/arXiv.2404.12000.

7. Petrenko, S. (6. a.). Al-powered [GitHub-penosutopii]. GitHub. https://github.com/serhii-petrenko/ai-powered.

8. Weisz, J. D., Kumar, S., Muller, M., Browne, K.-E., Goldberg, A., Heintze, E., & Bajpai, S. (2025). Examining the Use and
Impact of an Al Code Assistant on Developer Productivity and Experience in the Enterprise (arXiv:2412.06603v2). arXiv. https://doi.
org/10.48550/arXiv.2412.06603.

9. Windsurf. (6. a.). Windsurf. https://windsurf.com/.

Hama nepwozo Ha0xodxeHHs1 pykornucy 0o sudaHHs: 27.05.2025
JHama nipuliHsimoeo 9o dpyKy pykonucy nicrnsi peyeH3ysaHHsi: 30.06.2025
Hama nybnikauii: 25.07.2025

47

