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MODELING AND DESIGNING SOFTWARE FOR COMPUTING 

SYSTEMS USING ARTIFICIAL INTELLIGENCE WITH A CONCISE 

REVIEW OF RECENT RESEARCH AND EMERGING TRENDS 

 

Abstract This paper investigates the application of artificial intelligence 

methods for modeling and designing software for computing systems. Contemporary 

approaches to integrating AI technologies into software development processes are 

examined, specifically the use of machine learning for automating the generation of 

architectural solutions, neural networks for predicting quality characteristics of 

software systems, and large language model-based tools for automatic code 

generation. The main challenges of traditional software design methodologies are 

analyzed, including high labor intensity of modeling processes, complexity of 

maintaining consistency between different abstraction levels, and limited ability to 

adapt architectural solutions to changing requirements. A hybrid approach to software 

design is proposed that combines classical methodologies (UML, BPMN) with 

artificial intelligence technologies. The architecture of an intelligent design support 

system has been developed, which includes modules for requirements analysis based 

on natural language processing, generation of architectural patterns using 

reinforcement learning, automatic optimization of software component structure, and 

verification of design decisions.  

The results of an experimental study on the effectiveness of the proposed 

approach are presented using a distributed data processing system design as an 

example. It is demonstrated that the use of AI methods allows reducing design time 

by 35-40%, increasing requirements analysis completeness by 28%, and decreasing 
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the number of architectural errors in early development stages by 42%. Prospects for 

integrating generative models into continuous refactoring processes and evolution of 

software architectures are discussed. The research contributes to the advancement of 

AI-assisted software engineering by providing a comprehensive framework that 

bridges the gap between traditional software design practices and modern artificial 

intelligence capabilities, enabling architects and developers to leverage intelligent 

automation while maintaining control over critical design decisions. 

Keywords: software for computing systems, software modeling and design, 

methods and systems of artificial intelligence, AI-assisted Software Engineering, 

Software Architecture and Modeling. 
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МОДЕЛЮВАННЯ ТА ПРОЄКТУВАННЯ ПРОГРАМНОГО 

ЗАБЕЗПЕЧЕННЯ ДЛЯ ОБЧИСЛЮВАЛЬНИХ СИСТЕМ ІЗ 

ВИКОРИСТАННЯМ ШТУЧНОГО ІНТЕЛЕКТУ: СТИСЛИЙ ОГЛЯД 

СУЧАСНИХ ДОСЛІДЖЕНЬ І НОВІТНІХ ТЕНДЕНЦІЙ 

 

Анотація. У статті досліджується застосування методів штучного інте-

лекту для моделювання та проєктування програмного забезпечення обчислю-

вальних систем. Розглянуто сучасні підходи до інтеграції AI-технологій у 

процеси розробки програмного забезпечення, зокрема використання маши-

нного навчання для автоматизації генерації архітектурних рішень, нейронних 

мереж для прогнозування якісних характеристик програмних систем та 

інструментів на основі великих мовних моделей для автоматичної генерації 

коду. Проаналізовано основні виклики традиційних методологій проєктування 

програмного забезпечення, включаючи високу трудомісткість процесів моде-

лювання, складність підтримки узгодженості між різними рівнями абстракції та 

обмежену здатність до адаптації архітектурних рішень під змінні вимоги. 

Запропоновано гібридний підхід до проєктування програмного забезпечення, 

https://orcid.org/0000-0002-5311-0743
https://orcid.org/0000-0002-7184-1822
https://orcid.org/0000-0003-2145-6392


  

№ 10(51) 

  2025 

 

 

 

 

 

1173 
 

який поєднує класичні методології (UML, BPMN) з технологіями штучного 

інтелекту. Розроблено архітектуру інтелектуальної системи підтримки проєкту-

вання, яка включає модулі аналізу вимог на основі обробки природної мови, 

генерації архітектурних патернів з використанням навчання з підкріпленням, 

автоматичної оптимізації структури програмних компонентів та верифікації 

проектних рішень.  

Представлено результати експериментального дослідження ефективності 

запропонованого підходу на прикладі проєктування розподіленої системи 

обробки даних. Показано, що використання AI-методів дозволяє скоротити час 

проєктування на 35-40%, підвищити повноту аналізу вимог на 28% та знизити 

кількість архітектурних помилок на ранніх стадіях розробки на 42%.  

Розглянуто перспективи інтеграції генеративних моделей у процеси 

безперервного рефакторингу та еволюції програмних архітектур. Дослідження 

сприяє розвитку програмної інженерії з підтримкою штучного інтелекту, 

забезпечуючи комплексну структуру, яка усуває розрив між традиційними 

практиками проєктування програмного забезпечення та сучасними можли-

востями штучного інтелекту, дозволяючи архітекторам та розробникам 

використовувати інтелектуальну автоматизацію, зберігаючи при цьому 

контроль над критичними проектними рішеннями. 

Ключові слова: програмне забезпечення обчислювальних систем, 

моделювання та проєктування програмного забезпечення, методи та системи 

штучного інтелекту, програмна інженерія з підтримкою ШІ, архітектура та 

моделювання програмного забезпечення. 

 

Problem Statement. Modern computing systems are characterized by 

increasing architectural complexity, component heterogeneity, and dynamic 

requirements for functionality and performance. Traditional software design 

methodologies based on manual model and diagram creation face limitations 

regarding development speed, accuracy of system property prediction, and ability to 

adapt to changes. The process of modeling software systems requires significant 

intellectual effort from architects, including requirements analysis, selection of 

architectural patterns, design of component interactions, and verification of design 

decisions. According to expert estimates, up to 60% of software errors originate at 

the design stage and require significantly more resources to fix at later development 

stages. 

Integration of artificial intelligence methods into software modeling and design 

processes opens new opportunities for automating routine operations, intelligent 

decision support, and optimization of architectural characteristics. Machine learning 

technologies, natural language processing, and generative models enable 

transformation of approaches to software system creation, ensuring higher quality 
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design decisions with lower process labor intensity. The relevance of this research is 

determined by the need to develop effective AI-supported design methods and tools 

that would organically integrate into existing software development practices and 

address the growing complexity of computing systems while maintaining 

interpretability and verifiability of automated design decisions. 

Analysis of recent research and rublications.  

The application of artificial intelligence in software engineering has been 

actively researched by the international scientific community in recent years. 

Fundamental works by Harman M., Jones B., and O'Hearn P. [1, 2] laid the 

foundations for Search-Based Software Engineering, which uses evolutionary 

algorithms and metaheuristics for optimizing architectural solutions. Research by 

Chen X., Liu C., and Zhang H. [3, 4] demonstrated the effectiveness of applying deep 

neural networks for automatic program code generation based on natural language 

specifications. 

Works by Allamanis M., Brockschmidt M., and Gaunt A. [5, 6] are dedicated 

to using graph neural networks for analyzing program code structure and predicting 

defects. Research results show defect detection accuracy at 75-82%, exceeding 

traditional static analyzers. Studies by Svyatkovskiy A., Deng S., and Sundaresan N. 

[7] describe the architecture and implementation results of code autocompletion tools 

based on transformer models in industrial development environments. 

Research by Huang Q., Xia X., and Lo D. [8, 9] focuses on applying transfer 

learning techniques for adapting code generation models to specific domains and 

programming languages. Works by Feng Z., Guo D., and Tang D. [10] examine 

methods for training models on large-scale corpora of open-source code from GitHub 

and other repositories. 

An important direction is the use of AI for architectural modeling. Research by 

Anjorin A., Buchmann T., and Westfechtel B. [11] describes approaches to automatic 

generation of UML diagrams based on textual requirements analysis. Works by 

Kessentini M., Mkaouer W., and Ouni A. [12] are devoted to applying multi-criteria 

optimization for refactoring software system architectures. 

Despite significant progress, most existing research focuses on individual 

aspects of the design process. Comprehensive approaches that integrate AI 

technologies at all stages of the software modeling lifecycle for computing systems 

are lacking. Issues of ensuring interpretability of AI-generated architectural 

decisions, their consistency with quality requirements, and possibilities for effective 

verification remain insufficiently studied. 

Purpose of the Article.  

The purpose of this research is to develop methods and architecture for an 

intelligent support system for modeling and designing software for computing 

systems based on integration of artificial intelligence technologies with classical 
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development methodologies. To achieve this goal, the following tasks must be 

solved: analyze modern AI technologies and determine their potential for automating 

design processes; develop a hybrid system architecture that combines traditional 

modeling methods with AI components; create methods for automatic generation of 

architectural models based on requirements analysis; develop algorithms for 

optimizing design decisions using machine learning; conduct experimental 

evaluation of the effectiveness of proposed approaches. 

Presentation of main research material.  

The proposed approach to AI-supported software design is based on a multi-

level architecture of an intelligent system that integrates into existing development 

environments. The system architecture includes five main modules (table 1): 

 

Table 1 

Structure of the proposed AI-supported software design system 

User Interface (IDE Plugin) 

Requirements 

Analysis (NLP) 

Architecture 

Generation (RL) 

Optimization 

Module 

Verification 

(Formal Methods) 

Learning 

(ML Pipeline) 

Knowledge 

Base (Patterns) 

 

Requirements analysis module based on NLP.  

The module uses transformer models to process textual requirement 

specifications and automatically identify functional and non-functional requirements. 

Implementation is based on a fine-tuned BERT model for classifying requirement 

types and entity extraction. The module also performs dependency detection between 

requirements and conflict identification based on semantic similarity of vector 

representations. A clustering algorithm is applied to group related requirements, 

facilitating subsequent software module identification. The NLP pipeline includes 

preprocessing steps such as tokenization, stopword removal, and lemmatization to 

ensure accurate requirement classification. 

Generation of Architectural Patterns Using Reinforcement Learning.  

For the automatic generation of architectural solutions, a specialized agent 

based on Deep Q-Learning (DQL) has been developed. This agent is capable of 

learning to select optimal architectural patterns and intelligently compose them into 

a coherent and efficient system structure. The state space is defined as a vectorized 

representation of the current architecture, capturing the existing components, their 

interconnections, and applied patterns. The action space encompasses a range of 

operations, including adding new components, establishing or modifying connections 

between existing modules, and applying or substituting architectural patterns from 

the knowledge base. 



  

       № 10(51) 

         2025 

 

 

 

 

 

1176 
 

The agent is guided by a reward function designed to quantify the quality of 

the generated architectures. The reward incorporates several critical architecture 

metrics: coupling, which penalizes excessive dependencies between components; 

cohesion, which rewards strongly related components within modules; complexity, 

which discourages overly complicated designs; and requirements compliance, which 

evaluates the extent to which the architecture satisfies specified functional and non-

functional requirements. This comprehensive reward mechanism ensures that the 

agent learns to generate solutions that are not only functionally correct but also 

maintainable, scalable, and aligned with design best practices. 

During training, the agent iteratively explores the action space using an ε-

greedy policy, balancing exploration of new architectural possibilities with 

exploitation of learned strategies. Over time, the agent converges toward generating 

high-quality architectures with minimal human intervention, demonstrating the 

potential of reinforcement learning techniques for intelligent software design 

automation (figure 1). 

 

 
Fig. 1. Schematic representation of the ArchitectureAgent operation, 

illustrating the computation of the reward based on software architecture metrics 

and the action selection process using the ε-greedy strategy 

 

The agent is trained on a synthetic dataset of architectural solutions generated 

based on a pattern catalog (GoF, POSA, enterprise patterns) and real projects from 

open repositories. The training process includes episodes of architecture construction 

from given requirements, where the agent sequentially makes decisions about adding 

components and receives rewards for the quality of the resulting architecture. The 

system maintains a knowledge base of proven architectural patterns and their 

applicability contexts to guide the learning process. 
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Automatic Optimization of Software Component Structure. 

The optimization module employs genetic algorithms (GA) to iteratively refine 

software architectures in order to enhance their non-functional properties. Each 

chromosome represents a specific architectural configuration, including the 

allocation of functionalities among components, the types of inter-component 

connections, and deployment parameters. 

The fitness function evaluates each architecture based on key metrics such as 

performance, maintainability, scalability, and security. Each metric is assigned a 

weight derived from system requirements to balance trade-offs between competing 

objectives. By iteratively evolving the population of architectures through selection, 

crossover, and mutation, the GA identifies configurations that maximize overall 

quality and meet the desired non-functional criteria. 

 

Fig. 2. Workflow of GA-based software architecture optimization. 

 

Each chromosome encodes an architecture configuration, which is evaluated 

with a fitness function based on weighted metrics. Selected architectures undergo 

crossover and mutation to generate a new population, and the process repeats over 

multiple generations to maximize overall quality. 

Crossover and mutation operations are adapted to the architectural context: 

crossover can combine different subsystems from parent architectures, mutation can 

change component types, add intermediate layers, or modify interfaces. 

 

Fig. 3. Illustration of crossover and mutation operations in architecture optimization 
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Crossover combines subsystems from parent architectures to produce a child 

architecture. Mutation modifies the child by adding or removing components, 

changing architectural patterns, or adjusting interfaces to explore new configurations. 

The genetic algorithm maintains diversity in the population through elitism and 

tournament selection, ensuring convergence to high-quality architectural solutions 

while avoiding premature convergence to local optima. 

Design decision verification module.  

The verification module ensures automatic checking of generated architectural 

models for compliance with requirements and quality design principles. A 

combination of formal methods and heuristic analysis is used: 

1. Verification of complete coverage of functional requirements by matching 

functions identified in analysis with architecture components. 

2. Detection of architectural anti-patterns (God Object, Circular Dependencies, 

Spaghetti Code) using rules based on the system's graph structure. 

3. Assessment of compliance with SOLID principles through analysis of 

component coupling and responsibility metrics. 

4. Simulation of key usage scenarios to identify potential performance issues. 

The verification module employs static analysis techniques to examine 

component dependencies, interface contracts, and data flow patterns. It also performs 

dynamic analysis through scenario simulation to validate performance, scalability, 

and reliability characteristics before implementation begins. The module generates 

comprehensive verification reports that highlight potential issues, suggest 

improvements, and provide traceability between requirements and architectural 

elements. 

Experimental Evaluation.  

The effectiveness of the proposed approach was evaluated using the design of 

a distributed stream processing system with requirements for processing 100,000 

events per second, latency under 100 ms, and horizontal scalability. Three approaches 

were compared: traditional manual design by experienced architects, design with 

partial AI support (requirements analysis only), and full AI support (all system 

modules). Experimental results (averaged across 15 projects): 
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Fig. 4. Comparison of Design Approaches - Performance Metrics 

 

The greatest effect was observed in the requirements analysis phase, where the 

NLP module ensured completeness of requirements identification at 94-97% 

compared to 85-90% with manual analysis. Architecture generation using the RL 

agent automatically proposed effective pattern combinations (Event Sourcing, 

CQRS, Saga) that covered complex distributed transaction scenarios. 

The optimization module successfully refactored the initial architecture, 

reducing inter-module coupling by 22% and improving predicted scalability by 35%. 

Verification identified three critical issues in the architecture generated without AI 

support that would have been discovered only during implementation or testing 

stages. 

Integration with development processes.  

The developed system is implemented as a modular set of plugins compatible 

with widely used development environments, such as VS Code and IntelliJ IDEA, 

ensuring seamless integration into the daily workflows of software development 

teams. In addition, the system interfaces with popular requirements management 

platforms like Jira and Azure DevOps, allowing architects to import, manage, and 

track requirements directly within the development context. 
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Architects interact with the system through a natural language interface, which 

enables them to articulate functional and non-functional requirements, constraints, 

and design intentions in plain language. The system interprets these inputs and 

generates architectural models, which are visualized in standard formats such as UML 

and ArchiMate, providing a clear and actionable representation of the proposed 

solutions. 

The system is designed to support an iterative architecture refinement process. 

Architects can review and modify automatically generated solutions, adjusting 

component relationships, module hierarchies, or interface definitions. These 

corrections are captured by the system, and the embedded AI models learn from this 

feedback, progressively adapting to project-specific constraints, organizational 

design standards, and the preferred architectural style of individual development 

teams. 

By maintaining a continuous feedback loop, the system enables incremental 

improvement of AI models based on real-world design decisions and their outcomes. 

Over time, this allows the AI to generate more context-aware, high-quality 

architectural recommendations, reduce repetitive manual adjustments, and accelerate 

the overall design process, while still leaving architects in control of final decisions. 

Additionally, the system can track historical changes, support versioning of 

architectural models, and provide analytics on design trade-offs, helping teams make 

informed decisions and optimize for performance, maintainability, scalability, and 

security. 

Conclusions.  

This work proposes a comprehensive approach to integrating artificial 

intelligence technologies into software modeling and design processes for computing 

systems. The developed architecture of an intelligent design support system 

demonstrates the effectiveness of applying natural language processing methods, 

reinforcement learning, and genetic algorithms for automating key stages of software 

system creation. 

Experimental studies confirmed that the proposed approach allows reducing 

design time by 35-40%, increasing requirements analysis completeness by 28%, and 

decreasing the number of architectural errors in early development stages by 42%. 

The system ensures generation of architectural solutions that comply with modern 

quality design principles and effectively cover functional and non-functional 

requirements. 

Prospects for further research include expanding the architectural pattern base 

for specific domains (IoT, blockchain, edge computing), integrating generative 

models for automatic documentation and diagram creation, developing methods for 

explainability of AI-generated solutions to increase architect trust in automated tools. 

An important direction is creating mechanisms for continuous system learning based 
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on developer feedback and analysis of real software system evolution in industrial 

projects. Future work should also address the integration of AI-assisted design with 

DevOps practices and continuous deployment pipelines to ensure seamless transition 

from architectural models to production systems. 
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