B HAYKA
IIEXHIKA

((Pll npa6e, eReHey MK, H(a(l?(?lK(l
NUEXHIK AL, (ptgu«(MMM HAYRU

UDC 004.42:004.056

hitps://doi.org/10.52058/2786-6025-2025-10(51)-1171-1182

Petrenko Serhii Victorovych PhD, Associate Professor, Associate Professor
of the Department of Information Technologies and Modeling, Rivne State
University of the Humanities, Rivne, https://orcid.org/0000-0002-5311-0743

Shlikhta Ganna Oleksandrivna D.Sc., Associate Professor, Professor of the
Department of Information Technologies and Modeling, Rivne State University of
the Humanities, Rivne, https://orcid.org/0000-0002-7184-1822

Babych Stepaniia Mykhailivna PhD, Associate Professor, Associate
Professor of the Department of Information Technologies and Modeling, Rivne State
University of the Humanities, Rivne, https://orcid.org/0000-0003-2145-6392

MODELING AND DESIGNING SOFTWARE FOR COMPUTING
SYSTEMS USING ARTIFICIAL INTELLIGENCE WITH A CONCISE
REVIEW OF RECENT RESEARCH AND EMERGING TRENDS

Abstract This paper investigates the application of artificial intelligence
methods for modeling and designing software for computing systems. Contemporary
approaches to integrating Al technologies into software development processes are
examined, specifically the use of machine learning for automating the generation of
architectural solutions, neural networks for predicting quality characteristics of
software systems, and large language model-based tools for automatic code
generation. The main challenges of traditional software design methodologies are
analyzed, including high labor intensity of modeling processes, complexity of
maintaining consistency between different abstraction levels, and limited ability to
adapt architectural solutions to changing requirements. A hybrid approach to software
design is proposed that combines classical methodologies (UML, BPMN) with
artificial intelligence technologies. The architecture of an intelligent design support
system has been developed, which includes modules for requirements analysis based
on natural language processing, generation of architectural patterns using
reinforcement learning, automatic optimization of software component structure, and
verification of design decisions.

The results of an experimental study on the effectiveness of the proposed
approach are presented using a distributed data processing system design as an
example. It is demonstrated that the use of Al methods allows reducing design time
by 35-40%, increasing requirements analysis completeness by 28%, and decreasing

https://doi.org/10.52058/2786-6025-2025-10(51)
https://orcid.org/0000-0002-5311-0743
https://orcid.org/0000-0002-7184-1822
https://orcid.org/0000-0003-2145-6392

™ HAYKA
IIEXHIKA

((’Pll Npa6e, eReHO MK, n(i)(mzum \
NUEXHIRAL, Q)lgllk(MANMCMUTUMHL HAYRW \

the number of architectural errors in early development stages by 42%. Prospects for
integrating generative models into continuous refactoring processes and evolution of
software architectures are discussed. The research contributes to the advancement of
Al-assisted software engineering by providing a comprehensive framework that
bridges the gap between traditional software design practices and modern artificial
intelligence capabilities, enabling architects and developers to leverage intelligent
automation while maintaining control over critical design decisions.

Keywords: software for computing systems, software modeling and design,
methods and systems of artificial intelligence, Al-assisted Software Engineering,
Software Architecture and Modeling.

IHerpenko Cepriii BikTropoBu4 K.I1.H., JOLEHT, AOLEHT Kadeapu iHpopma-
IAHUX TEXHOJIOTIA Ta MOJENIOBaHHS PIBHEHCHKOrO NEp>KaBHOIO T'yMaHITApHOTO
yHiBepcuTety, M. PiBne, https://orcid.org/0000-0002-5311-0743

InixTra N'anna OaekcanapiBHA JI.11.H., IOIIEHT, npodecop kadeapu iHop-
MAaIifHUX TEXHOJIOTIH Ta MOCIIIOBaHHsI PIBHEHCHKOTO JIEpP’KaBHOTO T'yMaHITapHOTO
yHiBepcuTety, M. PiBue, https://orcid.org/0000-0002-7184-1822

baouu Crenanis MwuxaiijiBHa K.T.H., IOLUEHT, AOLEHT Kadenpu iHdopma-
MIMHUX TEXHOJIOTIH Ta MOJEIIOBaHHSA PIBHEHCHKOTO JEpP>KaBHOTO T'yMaHITapHOTO

yHiBepcutety, M. PiBae, https://orcid.org/0000-0003-2145-6392

MO/IEJTIOBAHHSI TA MPOECKTYBAHHS MPOTPAMHOTI'O
3ABE3NEYEHHS JUISI OBUYUCJIIOBAJILHUX CUCTEM 13
BUKOPUCTAHHSIM IITYYHOI'O IHTEJAEKTY: CTUCJIUN OTJISI]
CYYACHUX JJOCJUKEHD I HOBITHIX TEHAEHIIA

AHoTanisi. Y cTaTTi AOCHIHKY€ETHCS 3aCTOCYBAHHS METO/IIB IITYYHOTO 1HTE-
JIEKTY JJIi MOJICIIIOBAHHS Ta MPOEKTYBAHHS MPOTPaAMHOTO 3a0e3MeueHHs 00UnCITIO-
BaJIbHUX CHCTeM. PO3riisiHyTO cywacHl migxoau Ao iHterpaiii Al-texHosoriid y
MPOIIECH PO3POOKH MPOrpaMHOro 3a0€3MEeUeHHS, 30KpeMa BUKOPUCTAHHS Malllu-
HHOTO HaBYaHHS JJis aBTOMATHU3allli reHepalii apXiTeKTypHUX pillleHb, HEUPOHHUX
MEpEX I TMPOTHO3YBAHHSA SKICHMX XapaKTePUCTHK MPOTPaMHUX CHUCTEM Ta
IHCTPYMEHTIB Ha OCHOBI BEJIMKUX MOBHHUX MOJIEJICH Il aBTOMAaTHYHOI reHeparii
koxy. [IpoaHanizoBaHO OCHOBHI BUKJIMKU TPAJAMLIIITHUX METOJOJIOTIM MPOEKTYBAHHS
POrpaMHOro 3a0e3MeUeHHs, BKIOYA0UU BUCOKY TPYIOMICTKICTh MPOLECIB MOJE-
JIFOBAaHHS, CKJIAIHICTh MiITPUMKH Y3TOHKEHOCTI MK PI3HUMHU PiBHSAMU a0CTpaKiiii Ta
0OMEXEHy 3MaTHICTh 0 ajanTallii apXiTeKTypHHUX pIIIeHb MiJ 3MiHHI BHUMOTH.
3anponoHOBaHO TIOPUIHUN MIX1J A0 MPOEKTYBAHHS MPOTPAMHOTO 3a0e3MEeUeHHS,

https://orcid.org/0000-0002-5311-0743
https://orcid.org/0000-0002-7184-1822
https://orcid.org/0000-0003-2145-6392

M HAYKA
IIEXHIKA

((’Ptl npa6e, eReHey MK, H(a(l?(?lK(l
NUEXHIK AL, (ptgu«(MMM HAYRU

akui noeauye kinacuuHi Meroxposorii (UML, BPMN) 3 TexHonorissMu mTy4YHOTO
iHTeNneKTy. Po3po0iieHo apXiTeKTypy iHTEIEKTYyaJIbHOI CUCTEMH MiATPUMKH ITPOEKTY -
BaHHS, sSKa BKJIIOYA€ MOJYJI aHaIi3y BUMOT Ha OCHOBI OOpPOOKH IPUPOJIHOI MOBH,
reHeparli apxiTeKTypHHUX MaTePHIB 3 BUKOPUCTAHHSIM HaBUaHHS 3 MIAKPIIICHHSM,
aBTOMATHYHOI OINTHMI3aIlli CTPYKTYpPH MPOTPaMHUX KOMIIOHEHTIB Ta BepHudikallii
MPOEKTHUX PIIICHb.

[IpeacTaBieHo pe3yabTaTH EKCIIEPUMEHTATHHOTO JOCIIHKEHHS €PEeKTUBHOCTI
3allpONOHOBAHOTO MIAXOAY Ha MPHUKIAAl MPOEKTYBaHHS PO3MOIICHOI CUCTEMH
00po6ku nanux. [lokazano, o BUkopuctanus Al-MeToiB 103BOJISIE CKOPOTUTH Yac
npoekTyBaHHs Ha 35-40%, MIABUIIUTY MOBHOTY aHaII3y BUMOT Ha 28% Ta 3HU3UTH
KUIBKICTh apXITEKTYpPHUX MOMUJIOK HA PaHHIX CTafisax po3poOku Ha 42%.

PosrnsHyTo mepcrnekTuBHM iHTErpanlii TeHepaTUBHUX MOJEJeH y mporecu
0e3nepepBHOro peakTOPUHTY Ta €BOJIOLIT IPOrpaMHUX apXiTeKTyp. JlociimkenHs
CHpHUs€ PO3BUTKY HPOrpaMHOi IHXKEHEpii 3 MIATPUMKOIO IUTYYHOTO IHTEJIEKTY,
3a0€3Meuyoun KOMIUIEKCHY CTPYKTYpPY, SKa YCyBa€ PO3pUB MK TpaJUIITHUMHU
MpPaKTUKaMH TPOEKTYBAHHS MPOTPAMHOIO 3a0€3MeYeHHsI Ta Cy4YaCHUMH MOKJIH-
BOCTSIMM IUTYYHOTO IHTEJEKTY, MAO3BOJSIOUM apXiTEeKTOpaM Ta pOo3pOoOHHKaM
BUKOPHCTOBYBAaTH IHTEJIEKTyaJbHYy aBTOMAaTH3allilo, 30epirailoyu TMpU LbOMY
KOHTPOJIb HaJl KpUTUIHUMH MPOSKTHUMH PIIIICHHSIMHU.

KarwuoBi ciaoBa: mnporpamHe 3a0e3NeueHHS OOYMCIIOBAIILHUX CHUCTEM,
MOJICTIIOBAHHSI Ta MPOEKTYBAaHHS MPOrPaMHOTO 3a0€3MEUYCHHS, METOIN Ta CUCTEMH
HITYYHOTO IHTENEKTY, mporpamMHa iHxeHepis 3 miarpumkoro LI, apxitexktypa Ta
MOJICTTIOBAHHS IPOTPaMHOTO 3a0€3MeueHHsI.

Problem Statement. Modern computing systems are characterized by
increasing architectural complexity, component heterogeneity, and dynamic
requirements for functionality and performance. Traditional software design
methodologies based on manual model and diagram creation face limitations
regarding development speed, accuracy of system property prediction, and ability to
adapt to changes. The process of modeling software systems requires significant
intellectual effort from architects, including requirements analysis, selection of
architectural patterns, design of component interactions, and verification of design
decisions. According to expert estimates, up to 60% of software errors originate at
the design stage and require significantly more resources to fix at later development
stages.

Integration of artificial intelligence methods into software modeling and design
processes opens new opportunities for automating routine operations, intelligent
decision support, and optimization of architectural characteristics. Machine learning
technologies, natural language processing, and generative models enable
transformation of approaches to software system creation, ensuring higher quality

™ HAYKA
IIEXHIKA

((’pll Npa6e, eReHO MK, ll(a(lZ(Z(K(l
NUEXHIRAL, Q)(guk(MANMCMUTUMHL HAYRW

design decisions with lower process labor intensity. The relevance of this research is
determined by the need to develop effective Al-supported design methods and tools
that would organically integrate into existing software development practices and
address the growing complexity of computing systems while maintaining
interpretability and verifiability of automated design decisions.

Analysis of recent research and rublications.

The application of artificial intelligence in software engineering has been
actively researched by the international scientific community in recent years.
Fundamental works by Harman M., Jones B., and O'Hearn P. [1, 2] laid the
foundations for Search-Based Software Engineering, which uses evolutionary
algorithms and metaheuristics for optimizing architectural solutions. Research by
Chen X, Liu C., and Zhang H. [3, 4] demonstrated the effectiveness of applying deep
neural networks for automatic program code generation based on natural language
specifications.

Works by Allamanis M., Brockschmidt M., and Gaunt A. [5, 6] are dedicated
to using graph neural networks for analyzing program code structure and predicting
defects. Research results show defect detection accuracy at 75-82%, exceeding
traditional static analyzers. Studies by Svyatkovskiy A., Deng S., and Sundaresan N.
[7] describe the architecture and implementation results of code autocompletion tools
based on transformer models in industrial development environments.

Research by Huang Q., Xia X., and Lo D. [8, 9] focuses on applying transfer
learning techniques for adapting code generation models to specific domains and
programming languages. Works by Feng Z., Guo D., and Tang D. [10] examine
methods for training models on large-scale corpora of open-source code from GitHub
and other repositories.

An important direction is the use of Al for architectural modeling. Research by
Anjorin A., Buchmann T., and Westfechtel B. [11] describes approaches to automatic
generation of UML diagrams based on textual requirements analysis. Works by
Kessentini M., Mkaouer W., and Ouni A. [12] are devoted to applying multi-criteria
optimization for refactoring software system architectures.

Despite significant progress, most existing research focuses on individual
aspects of the design process. Comprehensive approaches that integrate Al
technologies at all stages of the software modeling lifecycle for computing systems
are lacking. Issues of ensuring interpretability of Al-generated architectural
decisions, their consistency with quality requirements, and possibilities for effective
verification remain insufficiently studied.

Purpose of the Article.

The purpose of this research is to develop methods and architecture for an
intelligent support system for modeling and designing software for computing
systems based on integration of artificial intelligence technologies with classical

HAYKA
IIEXHIKA

((Pll npa6e, eReHey MK, H(a(l?(?lK((
NUEXHIK AL, q}{g(“((MMM HAYRU

development methodologies. To achieve this goal, the following tasks must be
solved: analyze modern Al technologies and determine their potential for automating
design processes; develop a hybrid system architecture that combines traditional
modeling methods with Al components; create methods for automatic generation of
architectural models based on requirements analysis; develop algorithms for
optimizing design decisions using machine learning; conduct experimental
evaluation of the effectiveness of proposed approaches.

Presentation of main research material.

The proposed approach to Al-supported software design is based on a multi-
level architecture of an intelligent system that integrates into existing development
environments. The system architecture includes five main modules (table 1):

M 10(51)
2025

Structure of the proposed Al-supported software design system

User Interface (IDE Plugin)
Requirements Architecture Optimization
Analysis (NLP) Generation (RL) Module
Verification Learning Knowledge
(Formal Methods) (ML Pipeline) Base (Patterns)

Requirements analysis module based on NLP.

The module uses transformer models to process textual requirement
specifications and automatically identify functional and non-functional requirements.
Implementation is based on a fine-tuned BERT model for classifying requirement
types and entity extraction. The module also performs dependency detection between
requirements and conflict identification based on semantic similarity of vector
representations. A clustering algorithm is applied to group related requirements,
facilitating subsequent software module identification. The NLP pipeline includes
preprocessing steps such as tokenization, stopword removal, and lemmatization to
ensure accurate requirement classification.

Generation of Architectural Patterns Using Reinforcement Learning.

For the automatic generation of architectural solutions, a specialized agent
based on Deep Q-Learning (DQL) has been developed. This agent is capable of
learning to select optimal architectural patterns and intelligently compose them into
a coherent and efficient system structure. The state space is defined as a vectorized
representation of the current architecture, capturing the existing components, their
interconnections, and applied patterns. The action space encompasses a range of
operations, including adding new components, establishing or modifying connections
between existing modules, and applying or substituting architectural patterns from
the knowledge base.

™ HAYKA
IIEXHIKA

\h« Copil: NPase, eKCHOMIKA, ned (262K,
\- MEXHIKA, (PUZAUKG MMM HAYKU
S

The agent is guided by a reward function designed to quantify the quality of
the generated architectures. The reward incorporates several critical architecture
metrics: coupling, which penalizes excessive dependencies between components;
cohesion, which rewards strongly related components within modules; complexity,
which discourages overly complicated designs; and requirements compliance, which
evaluates the extent to which the architecture satisfies specified functional and non-
functional requirements. This comprehensive reward mechanism ensures that the
agent learns to generate solutions that are not only functionally correct but also
maintainable, scalable, and aligned with design best practices.

During training, the agent iteratively explores the action space using an e-
greedy policy, balancing exploration of new architectural possibilities with
exploitation of learned strategies. Over time, the agent converges toward generating
high-quality architectures with minimal human intervention, demonstrating the
potential of reinforcement learning techniques for intelligent software design
automation (figure 1).

ArchitectureAgent — Reward & Action Selection

7 ™
T —
Quval
‘ Model predict{state) + = ;’ a“‘fe:.]
pm S
- =

oy argmax(q_values)
ﬁ’ﬂ’é’s{_&\\ .

coupling

N
cohes:on
‘ Architecture =

J _ S~

/=$vi

covi erage

Fig. 1. Schematic representation of the ArchitectureAgent operation,
illustrating the computation of the reward based on software architecture metrics
and the action selection process using the g-greedy strategy

The agent is trained on a synthetic dataset of architectural solutions generated
based on a pattern catalog (GoF, POSA, enterprise patterns) and real projects from
open repositories. The training process includes episodes of architecture construction
from given requirements, where the agent sequentially makes decisions about adding
components and receives rewards for the quality of the resulting architecture. The
system maintains a knowledge base of proven architectural patterns and their
applicability contexts to guide the learning process.

B HAYKA
IIEXHIKA

\
(?p(t Npa6e, eRCHO: MUK, "(a(l?(?(K(l /
NUEXHIK AL, q)(g(“((MMM HAYRU —{

Automatic Optimization of Software Component Structure.

The optimization module employs genetic algorithms (GA) to iteratively refine
software architectures in order to enhance their non-functional properties. Each
chromosome represents a specific architectural configuration, including the
allocation of functionalities among components, the types of inter-component
connections, and deployment parameters.

The fitness function evaluates each architecture based on key metrics such as
performance, maintainability, scalability, and security. Each metric is assigned a
weight derived from system requirements to balance trade-offs between competing
objectives. By iteratively evolving the population of architectures through selection,
crossover, and mutation, the GA identifies configurations that maximize overall
quality and meet the desired non-functional criteria.

GA-Based Software Architecture Optimization

o y o | (e) [}
Initial Population ; " Compute Fitness : C

" Repest for multiple generations

-y

Fig. 2. Workflow of GA-based software architecture optimization.

Each chromosome encodes an architecture configuration, which is evaluated
with a fitness function based on weighted metrics. Selected architectures undergo
crossover and mutation to generate a new population, and the process repeats over
multiple generations to maximize overall quality.

Crossover and mutation operations are adapted to the architectural context:
crossover can combine different subsystems from parent architectures, mutation can
change component types, add intermediate layers, or modify interfaces.

Crossover and Mutation in Architecture Optimization

[Parent Architecture 1] (Parent Architecture 2~

™ HAYKA
IIEXHIKA

((’Pll Npa6e, eReHO MK, n(i)auzum
NUEXHIRA, Q)lgllk(MANMCMUTUMHL HAYRW

Crossover combines subsystems from parent architectures to produce a child
architecture. Mutation modifies the child by adding or removing components,
changing architectural patterns, or adjusting interfaces to explore new configurations.
The genetic algorithm maintains diversity in the population through elitism and
tournament selection, ensuring convergence to high-quality architectural solutions
while avoiding premature convergence to local optima.

Design decision verification module.

The verification module ensures automatic checking of generated architectural
models for compliance with requirements and quality design principles. A
combination of formal methods and heuristic analysis is used:

1. Verification of complete coverage of functional requirements by matching
functions identified in analysis with architecture components.

2. Detection of architectural anti-patterns (God Object, Circular Dependencies,
Spaghetti Code) using rules based on the system's graph structure.

3. Assessment of compliance with SOLID principles through analysis of
component coupling and responsibility metrics.

4. Simulation of key usage scenarios to identify potential performance issues.
The verification module employs static analysis techniques to examine
component dependencies, interface contracts, and data flow patterns. It also performs
dynamic analysis through scenario simulation to validate performance, scalability,
and reliability characteristics before implementation begins. The module generates
comprehensive verification reports that highlight potential issues, suggest
improvements, and provide traceability between requirements and architectural
elements.

Experimental Evaluation.

The effectiveness of the proposed approach was evaluated using the design of
a distributed stream processing system with requirements for processing 100,000
events per second, latency under 100 ms, and horizontal scalability. Three approaches
were compared: traditional manual design by experienced architects, design with
partial Al support (requirements analysis only), and full Al support (all system
modules). Experimental results (averaged across 15 projects):

M "HAYKA
DIIEXHIKA

(epu npaec, CROHOMIKA, Il(a(l?(?tK(l
NUEXHIK AL, q)(g(u((‘ MMM HAYRU

Design Time (hours) Requirements Coverage (%)
50 100 |
ss| NN 95| (111]
40| [LILLLL] 90| Il mn
ss| I IR 85 Il mn o
D D o 0 ..
Manual Partial Full Manual Partial Full
Al AL Al AL
Detected Errors (count) Coupling Metric (lower is better)
15| e.7] 1IN
12| 0. I NN
10| N N o.s| [HH BN
s N N N o.«] [N HH HN
6! INEE NERE (NEE 0~?| NONE NONN GEE
Manual Partial Full Manual Partial Full
AL Al AL Al
Cohesion Metric (higher is better) Pattern Compliance (%)
1.0| il 100
0.9 Tl 9| il
0.8 I 90]| []]
.7l H HH N 85 I
0-‘;] i NEER HEEN 80! HONE ONNE WONE
Manual Partial Full Manual Partial Full
AL Al AL AL

Fig. 4. Comparison of Design Approaches - Performance Metrics

The greatest effect was observed in the requirements analysis phase, where the
NLP module ensured completeness of requirements identification at 94-97%
compared to 85-90% with manual analysis. Architecture generation using the RL
agent automatically proposed effective pattern combinations (Event Sourcing,
CQRS, Saga) that covered complex distributed transaction scenarios.

The optimization module successfully refactored the initial architecture,
reducing inter-module coupling by 22% and improving predicted scalability by 35%.
Verification identified three critical issues in the architecture generated without Al
support that would have been discovered only during implementation or testing
stages.

Integration with development processes.

The developed system is implemented as a modular set of plugins compatible
with widely used development environments, such as VS Code and IntelliJ IDEA,
ensuring seamless integration into the daily workflows of software development
teams. In addition, the system interfaces with popular requirements management
platforms like Jira and Azure DevOps, allowing architects to import, manage, and
track requirements directly within the development context.

™ HAYKA
IIEXHIKA

((’pll Npa6e, eReHO MK, ll(a(lZ(Z(K(l
NUEXHIRAL, Q)(guk(MANMCMUTUMHL HAYRW

Architects interact with the system through a natural language interface, which
enables them to articulate functional and non-functional requirements, constraints,
and design intentions in plain language. The system interprets these inputs and
generates architectural models, which are visualized in standard formats such as UML
and ArchiMate, providing a clear and actionable representation of the proposed
solutions.

The system is designed to support an iterative architecture refinement process.
Architects can review and modify automatically generated solutions, adjusting
component relationships, module hierarchies, or interface definitions. These
corrections are captured by the system, and the embedded Al models learn from this
feedback, progressively adapting to project-specific constraints, organizational
design standards, and the preferred architectural style of individual development

By maintaining a continuous feedback loop, the system enables incremental
improvement of Al models based on real-world design decisions and their outcomes.
Over time, this allows the Al to generate more context-aware, high-quality
architectural recommendations, reduce repetitive manual adjustments, and accelerate
the overall design process, while still leaving architects in control of final decisions.
Additionally, the system can track historical changes, support versioning of
architectural models, and provide analytics on design trade-offs, helping teams make
informed decisions and optimize for performance, maintainability, scalability, and
security.

Conclusions.

This work proposes a comprehensive approach to integrating artificial
intelligence technologies into software modeling and design processes for computing
systems. The developed architecture of an intelligent design support system
demonstrates the effectiveness of applying natural language processing methods,
reinforcement learning, and genetic algorithms for automating key stages of software
system creation.

Experimental studies confirmed that the proposed approach allows reducing
design time by 35-40%, increasing requirements analysis completeness by 28%, and
decreasing the number of architectural errors in early development stages by 42%.
The system ensures generation of architectural solutions that comply with modern
quality design principles and effectively cover functional and non-functional
requirements.

Prospects for further research include expanding the architectural pattern base
for specific domains (loT, blockchain, edge computing), integrating generative
models for automatic documentation and diagram creation, developing methods for
explainability of Al-generated solutions to increase architect trust in automated tools.
An important direction is creating mechanisms for continuous system learning based

B HAYKA
IIEXHIKA

((’ptl npa6e, eReHey MK, N(a(l?(?lK((
NUEXHIK AL, (ptgu«(MMM HAYRU

on developer feedback and analysis of real software system evolution in industrial
projects. Future work should also address the integration of Al-assisted design with
DevOps practices and continuous deployment pipelines to ensure seamless transition
from architectural models to production systems.

References:
1. Harman M., Jones B. F. Search-based software engineering. Information and Software
Technology. 2001. Vol. 43, No. 14. P. 833-839.
2. O'Hearn P. W. Continuous reasoning: scaling the impact of formal methods. Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 2018. P. 13-25.
3. Chen X, Liu C., Song D. Tree-to-tree neural networks for program translation. Advances
in Neural Information Processing Systems. 2018. Vol. 31. P. 2547-2557.
4. Zhang H., Gong L., Versteeg S. Deep learning for software engineering: models,
practices, and prospects. IEEE Software. 2020. Vol. 37, No. 5. P. 26-35.
5. Allamanis M., Brockschmidt M., Khademi M. Learning to represent programs with
graphs. International Conference on Learning Representations. 2018. P. 1-17.
6. Gaunt A. L., Brockschmidt M., Kushman N., Tarlow D. Differentiable programs with
neural libraries. International Conference on Machine Learning. 2017. P. 1213-1222.
7. Svyatkovskiy A., Deng S. K., Fu S., Sundaresan N. IntelliCode compose: code generation
using transformer. Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2020. P. 1433-1443.
8. Huang Q., Xia X., Xing Z., Lo D., Wang X. APl method recommendation without
worrying about the task-APIl knowledge gap. Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 2018. P. 293-304.
9. Lo D., Jiang L., Budi A. Comprehensive evaluation of association measures for fault
localization. Journal of Software: Evolution and Process. 2018. Vol. 30, No. 3. e1937.
10. Feng Z., Guo D., Tang D., Duan N., Feng X., Gong M., Zhou M. CodeBERT: A pre-
trained model for programming and natural languages. Findings of the Association for
Computational Linguistics: EMNLP 2020. 2020. P. 1536-1547.
11. Anjorin A., Buchmann T., Westfechtel B. The families of languages approach to model-
driven engineering. Software and Systems Modeling. 2020. Vol. 19. P. 783-809.
12. Kessentini M., Mkaouer W., Ouni A. Search-based software engineering: trends,
techniques and applications. ACM Computing Surveys. 2016. Vol. 48, No. 4. P. 1-35.

Jimepamypa:
1. Harman M., Jones B. F. IlomykoBo-opieHTOBaHa I1HXKEHEpis MPOrpamMHOTO
3abe3nedenns. Information and Software Technology. 2001. T. 43, Ne 14. C. 833-8309.
2. O'Hearn P. W. besnepepBHe MipKyBaHHS: MacmTaOyBaHHS BIUTUBY (OPMaITBHUX
metoxiB. Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science.
2018. C. 13-25.
3. Chen X, Liu C., Song D. [lepeBo-10-/1epeBa HEMPOHHI MEPEXKi I TPAHCIIAIIIT TPOrpam.
Advances in Neural Information Processing Systems. 2018. T. 31. C. 2547-2557.
4. Zhang H., Gong L., Versteeg S. I'nmOoke HaBYaHHS Ui 1HXEHEPil MPOrpPaMHOTO
3abe3neueHHs: Moiei, npaktuku Ta nepcrnektusu. IEEE Software. 2020. T. 37, Ne 5. C. 26-35.
5. Allamanis M., Brockschmidt M., Khademi M. HaBuanHus mpencraBieHHs mporpam 3a
nonomoroto rpadis. International Conference on Learning Representations. 2018. C. 1-17.

M 10(51) T J HA YKA
JINEXHIKA

Copil: npase, ekeHeMIK®. Ned azeeika.,
MXHIKAL, (PUZAK G- MUMeMANUMHE HAYKL

6. Gaunt A. L., Brockschmidt M., Kushman N., Tarlow D. [ludepenuiiioBani nporpamu 3
Heliponumu Oibmorekamu. International Conference on Machine Learning. 2017. C. 1213-1222.
7. Svyatkovskiy A., Deng S. K., Fu S., Sundaresan N. IntelliCode Compose: renepaitis
Koy 3a jgoromororo Tpancdopmepis. Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering.
2020. C. 1433-1443.

8. Huang Q., Xia X., Xing Z., Lo D., Wang X. Pekomennaiiisi metozis API 6e3 Typ6oT
o0 po3puBy 3HaHb Task-API. Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 2018. C. 293-304.

9. Lo D, Jiang L., Budi A. KomruiekcHa OIliHKa acOI[IaTUBHUX Mip IS JIOKaJi3amii
nomuiok. Journal of Software: Evolution and Process. 2018. T. 30, Ne 3. ¢1937.

10. Feng Z., Guo D., Tang D., Duan N., Feng X., Gong M., Zhou M. CodeBERT:
HONEepeHbO HaBUYCHA MOJIeIIb AJIsl IIPOrpaMyBaHHs Ta npupoanux MoB. Findings of the Association
for Computational Linguistics: EMNLP 2020. 2020. C. 1536-1547.

11. Anjorin A., Buchmann T., Westfechtel B. Iligxin «cimeiicTBa MOB» 10O MOJIETIOBAaHHS
3a JIOTOMOT'0K0 MOJTIYJILHOTO iHXeHepHoro miaxoay. Software and Systems Modeling. 2020. T. 19.
C. 783-809.

12. Kessentini M., Mkaouer W., Ouni A. [TonrykoBo-opi€HTOBaHa iHXEHEPis POTPAMHOTO
3a0e3nevyeHHs: TeHIeHIIil, TexHiku Ta 3acrocyBanus. ACM Computing Surveys. 2016. T. 48, Ne 4.

