™ HAYKA
DIIEXHIKA

GbOTOJIH]

UDC 004.42:004.38:004.5:681.5
https://doi.org/10.52058/2786-6025-2025-13(54)-1676-1688

Liashuk Taras Hryhorovych Ph.D. in Physics and Mathematics, Senior
Lecturer, Department of Information Technologies and Modeling, Rivne State
University of the Humanities, https://orcid.org/0000-0002-2242-7537

Babych Stepaniia Mykhailivha Ph.D. in Engineering, Associate Professor,
Department of Information Technologies and Modeling, Rivne State University of
the Humanities, https://orcid.org/0000-0003-2145-6392

Siaskyi Volodymyr Andriyovych Ph.D. in Engineering, Associate Professor,
Department of Information Technologies and Modeling, Rivne State University of
the Humanities, https://orcid.org/0000-0002-2648-4934

Kindrat Pavlo Vadymovych Ph.D. in Law, Associate Professo, Department
of Digital Technologies and Methods of Teaching Informatics, Rivne State
University of the Humanities, https://orcid.org/0000-0003-0351-3349

MECHANISMS AND PROSPECTS OF CLASSICAL LOSSLESS
COMPRESSION ALGORITHMS IN THE ARCHITECTURE OF
OPERATING SYSTEMS, SOFTWARE AND HARDWARE

IMPLEMENTATIONS OF COMPUTER-PHYSICAL SYSTEMS

Abstract. A systematic analysis of classical lossless compression algorithms —
RLE, Huffman coding, LZ77 and LZ78 — is conducted. The research focuses on
studying the mechanisms of their operation, key characteristics, advantages and
disadvantages, as well as on substantiating their role as fundamental components of
modern computing systems.

In particular, it is demonstrated that RLE remains indispensable for eliminating
sequential redundancy in homogeneous data, while the Huffman method is a
reference entropy coding algorithm that eliminates frequency redundancy. The LZ77
and LZ78 algorithms serve as the basis for dictionary compression that eliminates
structural redundancy.

It is shown that in modern computing systems none of the basic algorithms is
used in a “pure” form. Instead, hybrid architectures dominate, in which LZ
mechanisms are inextricably integrated with entropy coding.

Based on this analysis, the integration of these algorithms into the architecture
of operating systems (kernel image and ZRAM memory compression, Btrfs/ZFS file

https://doi.org/10.52058/2786-6025-2025-13(54)
https://orcid.org/0000-0002-2242-7537
https://orcid.org/0000-0003-2145-6392
https://orcid.org/0000-0002-2648-4934
https://orcid.org/0000-0003-0351-3349

. HAYKA
DIIEXHIKA

GhOTOJHI

systems, network protocols, caching of graphics and user interface elements) and
software (archivers, media formats) is systematized.

The most promising directions for further development and application of
classical methods are identified: hybridization (creation of adaptive dictionaries),
parallelism (using GPU for high-performance data arrays) and hardware acceleration
(FPGA/ASIC). The potential of LZ algorithms in hardware implementations for
computer-physical systems and their methodological role in optimizing the control of
quantum states is investigated.

Keywords: lossless compression algorithms, dictionary/entropy coding, data
archiving, operating systems, software, computer-physical systems.

A

Jiamyk Tapac I'puropoBud kanauaatr Qi3MKO-MaTEMaTUYHUX HAYK,
cTapmuii Bukianay kadenpu 1HGOPMAIITHUX TEXHOJIOTIM Ta MOJEIIOBAHHS,

PiBHeHCHKHI nep)kaBHUI TyMmaHiTapHUW yHiBepcuteT, https://orcid.org/0000-0002-
2242-7537

baouu Crenania MuxaijiBHa KaHIMIaT TEXHIYHUX HAYK, JOICHT Kadeapu
1H(OpMaIIHHUX TEXHOJIOT1H Ta MoieTtoBaHHs, PIBHEHCHKUH Jlep kaBHUM T'yMaHITap-
HU yHiBepcuTeT, https://orcid.org/0000-0003-2145-6392

Csacbkuii Bosoaumup AuapiiioBM4Y KaHAMAAT TEXHIYHMX HAYK, JOICHT
kadenpu 1HPOPMAIIHHUX TEXHOJIOTIN Ta MOJACIIOBaHHS, PIBHEHCHKUN JepKaBHUI
ryMaHiTapHuii yHiBepcurer, https://orcid.org/0000-0002-2648-4934

Kingpar I[1aBjao BagumoBuu KaHauaaT IOPUANYHUX HAYK, TOLEHT Kadeapu
UPOBUX TEXHOJOTIM Ta METOAMKMA HaBYaHHS 1HQOpMaTUKH, PiBHEHCHKUI
JepKaBHUI T'yMaHiTapHHUI yHiBepcuTeT, https://orcid.org/0000-0003-0351-3349

MEXAHI3MHA TA ITEPCIIEKTUBHU KNTACUYHUX AJITOPUTMIB
CTUCHEHHS BE3 BTPAT B APXITEKTYPI ONEPAIIIMHUX CUCTEM,
IMPOI'PAMHOMY 3ABE3IIEYEHHI TA AITAPATHUX PEAJII3ALIAX
KOMIT'IOTEPHO-®I3UYHUX CUCTEM

AnoTanis. [IpoBeneHo cucteMHul aHali3 KJIACHYHUX aJITOPUTMIB CTUCHEHHS
06e3 Brpar — RLE, konyBanns Xaddmana, LZ77 ta LZ78. JlocmikeHHS 30ce-
peIXKEHO Ha BHMBYEHHI MEXaHI3MIB iXHBOI POOOTH, KIIIOUOBHX XapaKTEPHUCTHK,
nepeBar Ta HeJJ0JIIKIB, a TAKOK Ha OOTPYHTYBAaHHI IXHbOI POJI1 SIK PYHIaMEHTAIbHUX
CKJIaIOBUX CY4aCHUX OOUMCITIOBAJILHUX CUCTEM.

3o0kpema, mpoaeMoHCTpoBaHO, o RLE 3ammmmaerbcss He3aMiHHUM IS
YCYHEHHSI MTOCJIIIOBHOT HAIMIPHOCTI B OJTHOPITHUX JIaHUX, TO1 SIK MeToa Xadhdmana

https://orcid.org/0000-0002-2242-7537
https://orcid.org/0000-0002-2242-7537
https://orcid.org/0000-0003-2145-6392
https://orcid.org/0000-0002-2648-4934
https://orcid.org/0000-0003-0351-3349

™ HAYKA
DIIEXHIKA

GbOTOJIH]

€ CeTAJOHHUM aJITOPUTMOM EHTPOIIMHOTO KOJYBaHHS, IO YCyBa€ YaCTOTHY
HaaMipHICTh. Anroputmu LZ77 ta LZ78 ciayryioTh 0a3010 Jjis CIOBHHUKOBOTO
CTUCHEHHS, [0 YCYBA€ CTPYKTYPHY HAJAMIPHICTb.

[TokazaHo, 110 B Cy4acHUX OOYMCIIIOBAIBHUX CHCTEMax >KOJACH 13 0a30BHX
QITOPUTMIB HE BUKOPUCTOBYETHCS B «YUCTOMY» BUTJISIAL. 3aMICTh LIbOTO, JIOMIHYIOTh
rioOpuaHi apxiTeKTypu, B AKX LZ-mexaHi3MH HEpO3PUBHO 1HTETPOBaHI 3
CHTPOIIWHUM KOJTyBaHHSIM.

Ha ocHOBI Takoro anamizy, CHCTEMaTH30BaHO 1HTErpaIlil0 [IUX aJITOPUTMIB B
apXITEKTypy ONepamiiHuX cucteM (CTUCHEHHS oOpasy sapa Ta mam'sati ZRAM,
¢aiinosi cucremu Btrfs/ZFS, MepexxeBi MpoTOKOJIM, KEITYBaHHS Ipa(iky 1 €IEMEHTIB
1HTEepdelcy KopucTyBaya) Ta NporpamMHe 3a0e3nedyeHHs (apxiBaTopH, Mesia-
dbopmarn).

BuznaueHo HalOLIBII MEPCIEKTUBHI HAMPSIMKH TMOJANBIIOIO PO3BUTKY Ta
3aCTOCYBaHHS KJIACHYHUX METOMIB: TiOpuau3ailis (CTBOPEHHS aJaNTUBHUX CIIOB-
HUKIB), mapaienizM (Bukopuctants GPU mist BUCOKOTIPOAYKTUBHUX MACHBIB JTAHUX)
ta anaparne npuckoperss (FPGA/ASIC). HocnimkeHo notexiian LZ-anroputmis y
amapaTHUX peaizallisax JJisi KOMI'I0TepHO-(PI3UUHUX CUCTEM Ta iXHS METOI0JI0T14HA
POJIb B ONITUMI3AIliT KEpyBaHHS KBAHTOBUMHU CTaHAMMU.

Kiro4oBi cjioBa: anroputMu CTUCHEHHS 0€3 BTpPAT, CIIOBHHKOBE/CHTPOIIIHE
KOJIyBaHHS, apXiBallisl JaHUX, OMEpalliiHi CUCTEMH, MporpamMHe 3a0e3NeUeHHS,
KOMIT FOT€PHO-(i31UHI CUCTEMHU.

Problem statement. In the context of the exponential growth of digital data
volumes, the problem of effective information resource management is becoming of
paramount importance. The limitations of network bandwidth and physical storage
media necessitate continuous improvement of data storage and transmission
mechanisms. Although modern hybrid compression algorithms demonstrate high
efficiency ratios, their architecture is rooted in the fundamental principles established
by classical dictionary and entropy-based methods. Understanding the mechanisms,
advantages, and limitations of these basic algorithms is a necessary condition for their
further integration, optimization, and adaptation to the requirements of modern
operating systems (OS), software, and architectural solutions at the physical level.
Therefore, there is a need to systematize and analyze the role of these classical
approaches within the context of modern computing paradigms, as well as to define
their future development and modification paths to ensure maximum compression
efficiency.

Analysis of recent research and publications. Within the context of lossless
compression research, an analysis of recent publications [1] clearly demonstrates that
modern compression engineering represents a further evolution of the fundamental
ideas established in the seminal works of D. Huffman, J. Ziv, and A. Lempel. In

. HAYKA
DIIEXHIKA

GhOTOJHI

particular, a significant portion of research over the last decades [2] has focused on
the optimal integration of dictionary-based mechanisms with entropy coding. The
author relies on hybrid models that have proven their effectiveness in software
environments, as well as on contemporary research in high-speed algorithms that
demonstrate novel approaches to dictionary management and entropy coding.

Despite significant progress in developing universal hybrid algorithms, certain
aspects of the general problem remain unresolved, particularly regarding specialized
applications. Specifically, there are gaps in systematizing the selection criteria for
base algorithms for specific system tasks where the balance between speed and
compression ratio is critical [3]: for instance, in OS kernel image compression,
memory page swapping (ZRAM), or block-level filesystem operations (Btrfs, ZFS).
The role of RLE and its advanced analogs as extremely fast pre-filters also remains
insufficiently explored. Furthermore, the dynamic advancement of hardware
acceleration (FPGA, ASIC) and the necessity to adapt to new data types (such as
bioinformatics or quantum computing) necessitate a clear classification and analysis
of the modification prospects for these classical mechanisms [4].

Purpose of the article. The purpose of this article is to systematize the
selection criteria between dictionary and entropy coding for OS and software system
tasks, and to conduct a comprehensive analysis of classical lossless compression
mechanisms. This analysis serves to justify their effectiveness in the design of
hardware solutions tailored for the requirements of computer-physical systems.

Presentation of the main research material. For applications where data
integrity is critical (specifically within the OS kernel and filesystems), lossless
compression is utilized. It ensures perfect, bit-for-bit restoration of information after
the inverse transformation. Lossless compression refers to a group of methods that
eliminate statistical data redundancy while ensuring absolute process reversibility,
allowing for an exact copy of the original data without any distortion. This approach
is particularly vital for data types such as documents, source code (e.g., programming
code, CSV, JSON, XML), databases, financial reports, log files, and system data
(journals, configurations, backups), where even a minor loss of information is
unacceptable. Lossless compression is also applied to multimedia data when it is
necessary to preserve information in its original uncompressed form (e.g., PNG,
FLAC). The fundamental principles of this type of compression involve identifying
repeating patterns, replacing these sequences with shorter markers, and constructing
tables or dictionaries for optimal encoding. The most common lossless compression
algorithms are discussed below.

RLE (Run-Length Encoding) is one of the oldest and simplest data
compression methods, based on the principle of replacing sequences of identical
symbols with the count of those symbols followed by the symbol itself. Its
foundations were known and utilized even before the advent of computers,

N

™ HAYKA
DIIEXHIKA

SbOTOJIH!

particularly in telegraphy and early fax transmission systems for bitmap compression.
In computer science, RLE began to be widely applied in the 1960s [5].

To understand its operation, let us consider a case involving a text file
containing a string. In this instance, the encoding process will be as follows:
AAAAABBBCCDAA ——— 5A3B2CID2A.

Input string (13 symbols) RLE-code (10 symbols)

This example demonstrates how data can be effectively compressed (13 — 10).
This allows the data to occupy less space on the physical medium and to be easily
unpacked into the original string. However, such compression is not always rational.
The following example illustrates this:

ABCDEFGHIJK ———— 1A1B1C1D1EIF1G1H1I1J1K.

Input string (11symbols) RLE-code (22 symbols)

Therefore, it is evident that this algorithm is effective only for data with
numerous repetitions and may even increase the output file size. Furthermore, RLE
is not suitable for all data types, unlike dictionary-based algorithms or entropy coding.
However, the advantages of such an algorithm are clear: simplicity, speed, and
losslessness.

The decoding of RLE data is quite trivial and consists of expanding the encoded
"count-symbol* pairs back into the original sequence by repeating each symbol the
specified number of times.

There are many variations of RLE: classical, marker-based, fixed-length, etc.
Each is optimized for different data types: marker-based RLE avoids ambiguity when
the markers themselves appear in the data; fixed-length RLE simplifies processing
and ensures faster decompression.

Regarding its fields of application, this compression algorithm is designed to
work with homogeneous data (containing long sequences of identical values: solid
color areas in images, null bytes in memory, etc.), where encoding/decoding speed
and minimal computational complexity are critical. At the same time, RLE does not
guarantee a high compression ratio — it all depends on the level of sequential data
repetition. For this reason, RLE acts as a specialized tool rather than a general
compression mechanism, as it is ineffective for high-entropy data (e.g., text/binary
files, complex images).

Based on this, at the application level, RLE is used for raster graphics (BMP,
TIFF, PCX, Group 3 and Group 4 fax), video (encoding sequential frames and motion
vectors), databases (compressing columns with repeating values), network protocols
(compressing repetitive packets), game graphics (historically, for compressing sprites
and backgrounds for arcade and platform games), microcontrollers (storing static
display elements: icons, fonts, and other display components), scientific data
(compressing simulation results), and others.

In the context of the OS, RLE is important for caching graphics and Ul
elements (e.g., icons, window elements, system cursors), as well as for the frame

. HAYKA
DIIEXHIKA

GhOTOJHI

buffer when most of the screen remains static (e.g., BIOS, console mode, OS splash
screen). Additionally, RLE is critically important for remote desktop protocols (e.qg.,
VNC, RDP), where compressing changing screen regions during network
transmission provides significant bandwidth savings if most of the screen remains
static.

N

At the memory management level, although modern operating systems
typically use more complex LZ-algorithms for swapping, RLE can be applied for very
fast pre-compression of blocks known to contain long sequences of zeros or other
homogeneous data. This allows for the optimization of more complex encoders or the
avoidance of redundant disk writes.

The limitations of RLE regarding high-entropy data necessitated the
development of more universal methods that account for not only direct repetitions
but also the stochastic nature of symbol occurrences in the input data stream. One
such fundamental method is Huffman Coding [6], based on information theory.
Although it is significantly more complex than RLE, it is considerably more effective.
It is one of the most optimal entropy compression algorithms, allowing for data size
reduction by utilizing variable-length bit codes for different symbols. Symbols that
occur less frequently receive longer codes, while more frequent ones receive shorter
codes.

The Huffman coding algorithm involves the following stages:

o frequency calculation: the frequency of occurrence for each symbol in the
input stream is calculated;

o creation of leaf nodes: a "leaf node" (a tree node with no children) is created
for each unique symbol, containing the symbol itself and its frequency. All nodes are
placed in a priority queue (min-heap), where the lowest frequencies have the highest
priority, meaning they are extracted first;

« construction of the binary tree: the two nodes with the lowest frequencies are
merged into a new node, the frequency of which equals the sum of its children's
frequencies (any two of the smallest can be chosen; the order may affect the tree's
appearance but not the code lengths). The newly created node is added back into the
queue. These steps are repeated until only one node remains in the queue, which
becomes the root of the Huffman tree;

« symbol encoding within the tree: typically, the left child node is encoded as
0, and the right child as 1 (or vice versa, provided the sequence remains consistent).
Consequently, the most frequent symbols are assigned the shortest binary codes, while
the rarest symbols receive the longest codes;

 encoding the output character string: each symbol in the original string is
assigned its corresponding binary code.

For example, given the input string "ABRACADABRA", Huffman coding will
result in the following output:

™ HAYKA
DIIEXHIKA

ChOTOIIH]

ABRACADABRA —— 0110111 0 100 0 101 0 110 111 O,

Huffman Codding
Input string (11symbols) Huffman-code (23 bits)

Thus, if Huffman coding were not used and each unique symbol were encoded
with an equal number of bits, then in the string "ABRACADABRA", encoding 5
different symbols would require at least log,5 = 3 bits per symbol. Consequently, the
total number of bits would be = 11 - 3 =33. The advantage is clear: 23 bits versus 33
bits.

The constructed Huffman tree is used for decoding. Bits from the encoded
sequence are read one by one, starting from the root of the tree. Each bit indicates
which branch to follow (0 — left, 1 — right). As soon as a leaf node is reached, the
symbol is recognized. Then the process repeats from the root for the next symbol.
Due to the prefix property, this process is always unambiguous.

The advantages of this algorithm are losslessness (full restoration of the
original data), optimality (provides the maximum possible compression for given
symbol frequencies under the condition of using prefix coding), and simplicity (the
algorithm is relatively easy to understand and program).

At the same time, the disadvantages of the algorithm are as follows: decoding
requires a code table (or the Huffman tree itself; which adds overhead to the file size,
especially for short data); inefficiency for uniform data (if all symbols occur with
approximately the same frequency, the algorithm may increase the file size due to the
overhead of storing the code table); two passes (the algorithm requires two passes
over the data: one for frequency calculation and the second for encoding, which is not
an optimal method, especially for stream processing).

The primary role of Huffman coding at the system level is to provide the
entropy compression stage for data that has been pre-processed by dictionary methods
(LZ77-derivatives). For example, in modern algorithms (e.g., Zstd) used in ZRAM
or Btrfs, the tokens generated at the LZ-stage are often encoded using a principle
similar to the Huffman method to ensure maximum bit efficiency. Furthermore, direct
use of the Huffman method is found in some Linux distributions and specialized OSs
for compressing bootable kernel images.

Regarding application software, the Huffman method is used to ensure optimal
compression of data already prepared by other algorithms, specifically: JPEG
(compression of DCT coefficient tables), PNG (uses DEFLATE, which includes
Huffman), MP3 (partially), MPEG (encoding variable DCT coefficients and motion
vector data), ZIP (as one of the compression methods), encoding of text files and logs,
and facsimile machines (CCITT Group 3, Group 4). Additionally, some data tables
in complex font formats (e.g., TTC, OpenType) used by the OS for text rendering are
compressed using this algorithm to reduce font file size. Moreover, in some network
protocols and transmission formats (e.g., HTTP compression), RLE or Huffman can
be used as part of a general compression mechanism to optimize traffic.

. HAYKA
DIIEXHIKA

GhOTOJHI

While RLE and Huffman methods effectively eliminate sequential and
frequency redundancy, further increasing the compression ratio requires the use of
dictionary algorithms. They provide a more powerful mechanism for identifying and
replacing long, repeating sequences of symbols in the data stream, the foundations of
which are the Lempel-Ziv family of algorithms, specifically LZ77 and LZ78. These
algorithms use a dictionary approach, replacing repeating sequences of symbols
(phrases) with references to previous occurrences of these phrases or entries in a
dynamic dictionary. The key difference between them lies in how they manage this
dictionary.

The LZ77 algorithm (Lempel-Ziv 1977) [7], known as the sliding window
compression method, utilizes a fixed memory area that constantly moves across the
data. This window is functionally divided into two parts: the search buffer, which acts
as a dynamic dictionary containing the most recently processed data, and the look-
ahead buffer, which holds the symbols currently awaiting encoding. A critical
encoding parameter is the match length range — the minimum and maximum length
of a sequence that can be encoded as a reference. Since these parameters (window
size and match length range) are not standardized in “pure” LZ77, they vary
depending on the specific algorithm modification and its implementation goals (speed
Versus compression ratio).

When the algorithm finds the longest match for the current sequence of
symbols within the search buffer, it replaces it with a short reference — a triplet
(token), which is an encoded representation of the found sequence in the format
(offset, length, next_symbol). The offset indicates the location of the match in the
buffer (the distance backward); notably, if match lengths are identical, the largest
offset (i.e., the earliest found phrase) is chosen to optimize dictionary usage (this is
done to ensure that as many symbols as possible remain in the dictionary for
potentially longer matches later).

The length specifies the number of repeating symbols, and the next_symbol is
the first symbol following the match. If no match is found, the algorithm generates a
triplet with zero length followed by the current symbol. After outputting the token
(regardless of whether a match was found), the sliding window shifts forward by the
number of matched symbols plus one. This approach effectively compresses data by
converting long repetitions into short codes.

The key characteristics of this algorithm are:

o the dictionary is implicit and dynamic: consisting only of the recently
processed portion of the data;

e the dictionary size is fixed: by the size of the sliding window;

 decoding speed is typically higher than encoding speed.

The example below illustrates the LZ77 encoding of the string
"ABRACADABRA":

N

™ HAYKA
DIIEXHIKA

Ch0IO]TH)

ABRACADABRA ———— (0,0,A)(0,0,B)(0,0,R)(3,1,C)(5,1,D)(7,4,"),

Lz77
Input string (11symbols) LZ77-code (6 triplets)

which results in 6 triplets at the output instead of the 11 original input symbols.
In turn, the LZ77 decoding algorithm is the inverse of the encoding process
(which is characteristic of all lossless compression algorithms).

Among the advantages of LZ77, it can be highlighted that this algorithm
performs compression on-the-fly, without constructing a complete dictionary. At the
same time, it works well for repeating fragments of any length.

On the other hand, the disadvantages include the complexity of implementation
due to the sliding window and high RAM requirements when a large window size is
used.

It is worth noting that "pure™ LZ77 is rarely used in its original form. Primarily,
it serves as the foundation for many modern lossless compression algorithms, such as
LZO/LZSS/LZ4 (LZ77-modifications), Deflate (LZ77 + Huffman), LZMA (LZ77-
modification + arithmetic coding), Zstd (LZ77-modification + FSE), and others.
This algorithm and its modifications (mostly Deflate) are widely applied in
various fields, specifically in: archive formats and data compression, including
Gzip/ZIP and the Zlib library; image and multimedia formats PNG/PDF, for
compressing raster data and reducing the size of embedded images/fonts,
respectively; computer networks and web protocols (server-side HTTP compression
of web content (HTML, CSS, JS) into Gzip format, before sending it to the client).
Regarding the system level, in OS architecture, modifications of this algorithm
are applied for: compressing OS kernel images and initial filesystems to accelerate
boot time; reducing the size of the executable file or installation package, including
the compression of icons and interface elements, which is necessary for the
compactness of distributions and software; compressing memory pages (LZ4/LZ0O)
that are not actively used, which helps reduce physical memory usage; compressing
data at the block level in modern filesystems (e.g., Btrfs, ZFS), which not only saves
disk space but also increases 1/O operation speed; etc. Furthermore, virtualization
software (e.g., VMware, Hyper-V) utilizes LZ77-derivatives for efficient storage and
rapid transfer of large virtual disk and memory images, which serves as the basis for
migration mechanisms and filesystem snapshots.

The primary reason for such popularity of LZ77 is the asymmetry of speed:
decoding occurs significantly faster than encoding. This makes it ideal for cases
where data needs to be compressed once but rapidly unpacked multiple times (e.qg.,
archives, files for internet download).

While the LZ77 algorithm relies on a sliding window for dynamic searching of
already encoded phrases, its efficiency is limited by the fixed size of this window. In
contrast, LZ78 (Lempel-Ziv 1978) [8] introduced a fundamentally different
dictionary mechanism: instead of a moving buffer, it uses an explicit, independent

. HAYKA
DIIEXHIKA

GhOTOJHI

table (dictionary). This allows for storing and repeatedly referencing all previously
found phrases, regardless of their proximity to the current position. This dictionary is
built dynamically: the LZ78 algorithm reads the input stream and adds new phrases
to the dictionary as they appear.

At each step, the algorithm searches for the longest prefix (analogous to the
longest match in the search buffer for LZ77) — the longest sequence of symbols at the
beginning of the unencoded data that is already contained in the dictionary — and
encodes it as a reference to an index in the table. In the event a match is found, the
algorithm outputs a pair of values (dictionary_index, next_symbol), where the index
of the found prefix in the dictionary (dictionary_index) is a reference to an already
known string, and the next_symbol is the first symbol that did not match. The found
prefix, followed by the next symbol, is then added as a new entry to the dictionary. If
no match is found, the algorithm adds the current symbol to the dictionary and outputs
a pair with a zero index.

Among the key characteristics of this approach, the following can be
highlighted:

o the dictionary is explicit and dynamic: increasing in size as new phrases are

N

added;
 the dictionary is constructed and references repeating phrases: using an
index;
e it can achieve a higher compression ratio for data with high repeatability than
LZ77: since its dictionary can grow to include very long, common phrases from the
entire file.
Thus, the LZ78 encoding of "ABRACADABRA" results in 7 pairs at the output
instead of 11 symbols:
ABRACADABRA ——— (0,A)(0,B)(0,R)(1,C)(1,D)(1,B)(3,A).

LZ78
Input string (11symbols) LZ78-code (7 pairs)

During decoding, the dictionary is initially empty. Pairs (index, next_symbol)
are read sequentially, and for each pair, a new entry is created: new_entry =
dict[index] + next_symbol (where dict[0] =").

Thus, when encoding the string "ABRACADABRA", LZ77 wins here due to
the long repetition of "ABRA" and its mechanism of referencing previous matches.
However, if another string is taken, such as "ABCABCABCABCABC", the LZ78
algorithm will show better results because it forms a dictionary of typical patterns
("ABC", "ABCABC", etc.), and subsequent compression occurs through the reuse of
dictionary indexes without the need for exact position matching as in LZ77.
Consequently, the efficiency of the LZ77 and LZ78 algorithms is determined by the
structure of the input data: LZ77 compresses texts with local, closely located
repetitions better, while LZ78 is more effective for sequences with regular or distant
repetitions.

™ HAYKA
DIIEXHIKA

ChOTOIIH]

The advantage of the LZ78 algorithm is its simplicity and speed of
implementation, as well as the fact that it does not require a search window. The
disadvantages include the possibility of uncontrolled dictionary size growth. Also,
there is no internal referencing mechanism characteristic of LZ77, which prevents
referencing recently encoded data and leads to excessive fragmentation.

Like its predecessor LZ77, LZ78 is used in the OS, software, and their
components indirectly. Primarily, it serves as the basis for one of the most popular
compression formats, LZW, which is indispensable for the GIF/TIFF graphic
formats. LZ78/LZW also find applications in less common but important areas,
notably the original compress utility in UNIX-based systems. In the past, LZW was
used in some proprietary data compression schemes integrated into early versions of
operating systems.

Regarding the prospects of the RLE/Huffman/LZ77/LZ78 algorithms
discussed above, in modern computing systems, none of the basic algorithms are used
n "pure"” form. Instead, modified or hybrid architectures dominate, where the LZ77
dictionary mechanism is combined with entropy coding to achieve the best result.
Consequently, the promising directions for the development and research of these
algorithms are:

e hybridization and adaptation: further hybridization to create multi-stage
algorithms. One of the most modern algorithms, Zstd, already demonstrates the
effectiveness of combining the LZ77 dictionary approach with high-speed FSE
entropy coding. Future hybrids should focus on: data-driven learning — using pre-
trained dictionaries adapted for specific data types (logs, genomic sequences, code) to
increase the compression ratio and speed; integration with RLE — using methods
similar to RLE and its advanced variants (Delta Encoding) as a first, extremely fast
filter to remove simple repetitions before applying more complex LZ-algorithms,
especially for scientific and time-series data;

« hardware acceleration and parallelism: shifting the computational load from
the CPU to specialized hardware and parallel architectures: FPGA/ASIC — particularly
relevant for LZ4 and LZO, where the simple structure allows for throughput of tens
of GB/s, which is vital for high-performance filesystems where compression/
decompression must not create I/O latency, as well as for hardware-level data
compression in SSDs and network cards; GPU — especially relevant for high-
performance data arrays (e.g., scientific simulations, video encoding, machine
learning) that do not fit into the CPU cache; stream processing — adapting algorithms
for continuous streaming compression without the need to load the entire file into
memory, which is key for network protocols and remote services;

« new fields of application: quantum computing — researching the possibilities
of adapting dictionary and entropy coding principles for efficient management and
compression of states in quantum systems; bioinformatics — creating specialized

No 13(54) L. H A YKA
I INEXHIKA

GhOTOJHI

algorithms based on LZ77/LZMA for compressing vast amounts of genomic data
(DNA/RNA sequences), where repeatability has a clear structural nature ideal for
dictionary methods; security and obfuscation (Malware) — using modified LZ-
algorithms to obfuscate malicious software and, conversely, to develop high-
efficiency intrusion detection systems that analyze compressed network traffic.

Conclusions. The compression algorithms discussed demonstrate a gradual
evolution from simple, specialized methods to complex universal systems that reflect
the fundamental principles of information theory. RLE is the simplest tool, the
efficiency of which depends entirely on local, sequential redundancy; it is
indispensable for the rapid processing of homogeneous data but is completely
unsuitable for high-entropy streams.

In contrast, Huffman coding implements the principle of entropy compression
by eliminating frequency redundancy through variable-length codes, ensuring
optimality for a given symbol distribution, and serving as a mandatory final stage in
most hybrid encoders.

Further increase in the compression ratio was achieved through the LZ77 and
LZ78 dictionary methods, which eliminate structural redundancy by replacing
repeating phrases with references. Thus, LZ77 with its sliding window is ideal for on-
the-fly compression and local repetitions. Meanwhile, LZ78 utilizes a dynamically
constructed dictionary, allowing it to effectively capture global, distant repetitions,
albeit at the cost of greater complexity.

In modern computing environments, basic compression algorithms are rarely
applied in their original form. Instead, modified and/or hybrid architectures dominate
to achieve optimal efficiency, where the dictionary mechanism is inextricably
integrated with entropy coding. Therefore, the prospects for the development of these
algorithms lie in the further optimization of such combinations through hardware
acceleration and the development of self-learning, adaptive dictionaries that ensure
maximum efficiency for specialized data types, ranging from genomic sequences to
virtual environments.

N

References:
1.Salomon, D. (2006). Data Compression: The Complete Reference. 4th ed. Springer.
2.Sayood, K. (2017). Introduction to Data Compression. 5th ed. Morgan Kaufmann.
3.Gao, C., Xu, X,, Yang, Z., Lin, L., Li, J. (2003). QZRAM: A Transparent Kernel Memory
Compression System Design for Memory-Intensive Applications with QAT Accelerator
Integration. Applied Sciences, 13(18), 10526. https://doi.org/10.3390/app131810526.
4.Mohey, G., Zekry, A., Zakaria, H. (2021). FPGA implementation of Lempel-Ziv data
compression. Int. J. Reconfigurable & Embedded Syst, 10(2), 99-108. https://doi.org/10.11591/
ijres.v10.i2.pp99-108.
5.Rosenfeld, A., Kak, A.C. (1982). Digital Picture Processing. 2nd ed. Academic Press.
6.Huffman, D.A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the 1.R.E., 40(9), 1098-1101. https://doi.org/10.1109/JRPROC.1952.273898.

™ HAYKA
DIIEXHIKA

(CbOTOIH &

7.Ziv, J., Lempel, A. (1977). A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, 1T-23(3), 337-343. https://doi.org/10.1109/
TIT.1977.1055714.
8.Ziv, J., Lempel, A. (1978). Compression of Individual Sequences Via Variable-Rate
Coding. IEEE Transactions on Information Theory, 1T-24(5), 530-536. https://doi.org/10.1109/
TIT.1978.1055934.

Jimepamypa:

1.Salomon, D. (2006). Data Compression: The Complete Reference. 4th ed. Springer.
2.Sayood, K. (2017). Introduction to Data Compression. 5th ed. Morgan Kaufmann.
3.Gao, C., Xu, X., Yang, Z., Lin, L., Li, J. (2003). QZRAM: A Transparent Kernel Memory
Compression System Design for Memory-Intensive Applications with QAT Accelerator
Integration. Applied Sciences, 13(18), 10526. https://doi.org/10.3390/app131810526.

4.Mohey, G., Zekry, A., Zakaria, H. (2021). FPGA implementation of Lempel-Ziv data
compression. Int. J. Reconfigurable & Embedded Syst, 10(2), 99-108. https://doi.org/10.11591/
ijres.v10.i2.pp99-108.

5.Rosenfeld, A., Kak, A.C. (1982). Digital Picture Processing. 2nd ed. Academic Press.
6.Huffman, D.A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the I.R.E., 40(9), 1098-1101. https://doi.org/10.1109/JRPROC.1952.273898.
7.Ziv, J., Lempel, A. (1977). A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, 1T-23(3), 337-343. https://doi.org/10.1109/TIT.
1977.1055714.

8.Ziv, J., Lempel, A. (1978). Compression of Individual Sequences Via Variable-Rate
Coding. IEEE Transactions on Information Theory, 1T-24(5), 530-536. https://doi.org/10.1109/
TIT.1978.1055934.

